论文标题

GEOM-GCN:几何图卷积网络

Geom-GCN: Geometric Graph Convolutional Networks

论文作者

Pei, Hongbin, Wei, Bingzhe, Chang, Kevin Chen-Chuan, Lei, Yu, Yang, Bo

论文摘要

通信神经网络(MPNN)已成功应用于各种现实世界应用中的图表上的表示。但是,MPNNS聚合器的两个基本弱点限制了它们表示图形结构数据的能力:丢失社区中节点的结构信息,并且缺乏捕获拆卸图中的长期依赖性的能力。从不同角度来看,很少有研究注意到弱点。从对经典神经网络和网络几何形状的观察结果,我们提出了一种新型的图形神经网络的几何聚合方案,以克服这两个弱点。基本思想的背后是图上的聚合可以受益于图表的连续空间。所提出的聚合方案是置换不变的,由三个模块,节点嵌入,结构邻域和双层聚集组成。我们还介绍了该方案在图形卷积网络中的实现,称为GEOM-GCN(几何图形卷积网络),以在图上执行the绕的学习。实验结果表明,拟议的GEOM-GCN在广泛的开放数据集上实现了最先进的性能。代码可在https://github.com/graphdml-uiuc-jlu/geom-gcn上找到。

Message-passing neural networks (MPNNs) have been successfully applied to representation learning on graphs in a variety of real-world applications. However, two fundamental weaknesses of MPNNs' aggregators limit their ability to represent graph-structured data: losing the structural information of nodes in neighborhoods and lacking the ability to capture long-range dependencies in disassortative graphs. Few studies have noticed the weaknesses from different perspectives. From the observations on classical neural network and network geometry, we propose a novel geometric aggregation scheme for graph neural networks to overcome the two weaknesses. The behind basic idea is the aggregation on a graph can benefit from a continuous space underlying the graph. The proposed aggregation scheme is permutation-invariant and consists of three modules, node embedding, structural neighborhood, and bi-level aggregation. We also present an implementation of the scheme in graph convolutional networks, termed Geom-GCN (Geometric Graph Convolutional Networks), to perform transductive learning on graphs. Experimental results show the proposed Geom-GCN achieved state-of-the-art performance on a wide range of open datasets of graphs. Code is available at https://github.com/graphdml-uiuc-jlu/geom-gcn.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源