论文标题

基塔夫自旋液体中的声子动力学

Phonon dynamics in the Kitaev spin liquid

论文作者

Ye, Mengxing, Fernandes, Rafael M., Perkins, Natalia B.

论文摘要

在量子旋转液体中寻找分数的搜索很大程度上依赖于它们与环境的脱钩。但是,在实际环境中,自旋晶格相互作用是不可避免的。尽管Majorana fermion由于自旋晶格耦合的梯度形式而产生了强烈的衰变,但对声子动力学的研究可能是对自由度自由度的分数化的间接探针。在这里,我们建议可以在声音衰减和大厅的粘度中看到分数化的签名。尽管这两个量都可以与声子自我能源的虚构部分有关,但它们的起源却完全不同,并且霍尔粘度需要时间反转对称性破裂。首先,我们计算出声子在一对Majorana fermions中散射的声子引起的声音衰减,并表明其在温度下是线性的($ \ sim t $)。我们认为它具有特定的角度依赖性,可提供有关自旋晶格耦合和低能量的Majorana fermion频谱的信息。然后分析在没有时间反向对称性的情况下可观察的效果。我们从微观的哈密顿量获得了语音厅的粘度项,具有时间反转对称性术语。重要的是,霍尔粘度项将纵向和横向声子模式混合在一起,并以独特的方式重新归一化光谱,可以在光谱测量中进行探测。

The search for fractionalization in quantum spin liquids largely relies on their decoupling with the environment. However, the spin-lattice interaction is inevitable in a real setting. While the Majorana fermion evades a strong decay due to the gradient form of spin-lattice coupling, the study of the phonon dynamics may serve as an indirect probe of fractionalization of spin degrees of freedom. Here we propose that the signatures of fractionalization can be seen in the sound attenuation and the Hall viscosity. Despite the fact that both quantities can be related to the imaginary part of the phonon self-energy, their origins are quite different, and the time-reversal symmetry breaking is required for the Hall viscosity. First, we compute the sound attenuation due to a phonon scattering off of a pair of Majorana fermions and show that it is linear in temperature ($\sim T$). We argue that it has a particular angular dependence providing the information about the spin-lattice coupling and the low-energy Majorana fermion spectrum. The observable effects in the absence of time-reversal symmetry are then analyzed. We obtain the phonon Hall viscosity term from the microscopic Hamiltonian with time-reversal symmetry breaking term. Importantly, the Hall viscosity term mixes the longitudinal and transverse phonon modes and renormalize the spectrum in a unique way, which may be probed in spectroscopy measurement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源