论文标题
几何自旋轨道耦合和手性诱导的自旋选择性
Geometric spin-orbit coupling and chirality-induced spin selectivity
论文作者
论文摘要
我们报告了一种新型的自旋轨道耦合(SOC),称为几何SOC。从弯曲空间中的相对论理论开始,我们在嵌入扁平三维的通用曲线中得出了一个有效的非依赖性哈密顿式化学。几何SOC为$ O(m^{ - 1})$,其中$ m $是电子质量,因此比传统的$ O(m^{ - 2})$大得多。对于纳米级螺旋,估计能量量表为一百MEV。我们计算耦合螺旋模型中电流诱导的自旋极化,作为手性诱导的自旋选择性的代表。我们发现这取决于螺旋的手性,当应用$ 1〜 {\ rmμa} $的费用时,每$ {\ rm nm} $ $ 0.01 \ hbar $ $ {\ rm nm} $。
We report a new type of spin-orbit coupling (SOC) called geometric SOC. Starting from the relativistic theory in curved space, we derive an effective nonrelativistic Hamiltonian in a generic curve embedded into flat three dimensions. The geometric SOC is $O(m^{-1})$, in which $m$ is the electron mass, and hence much larger than the conventional SOC of $O(m^{-2})$. The energy scale is estimated to be a hundred meV for a nanoscale helix. We calculate the current-induced spin polarization in a coupled-helix model as a representative of the chirality-induced spin selectivity. We find that it depends on the chirality of the helix and is of the order of $0.01 \hbar$ per ${\rm nm}$ when a charge current of $1~{\rm μA}$ is applied.