论文标题

离散速率全双工无线电动通信网络的最小长度调度

Minimum Length Scheduling for Discrete-Rate Full-Duplex Wireless Powered Communication Networks

论文作者

Iqbal, Muhammad Shahid, Sadi, Yalcin, Coleri, Sinem

论文摘要

在本文中,我们考虑了一个无线电动通信网络,其中多个具有RF能量收集功能的用户在全双工模式下与混合能源和信息访问点(HAP)通信。每个用户必须使用最初的电池中最初可用的能量及其可以收获的能量,直到传输结束时,都必须从有限的离散率级别传输一定数量的数据。考虑到该模型,我们提出了一个新型的基于离散率的最小长度调度问题,以确定受数据,能量因果关系和最大发射功率约束的最佳功率控制,速率适应和传输计划。提出的优化问题已被证明是NP-HARD,需要指数时间算法才能求解全局最佳。作为解决方案策略,首先,我们证明了功率控制和速率适应和调度问题可以在最佳解决方案中分别解决。对于功率控制和速率适应问题,我们根据提出的最小长度调度插槽定义得出最佳解决方案。对于调度,我们会根据随着时间的推移的最小长度调度插槽的分布来对问题进行分类。对于非重叠插槽方案,我们提出最佳的调度算法。对于重叠的情况,我们提出了一种多项式的启发式调度算法。

In this paper, we consider a wireless powered communication network where multiple users with RF energy harvesting capabilities communicate to a hybrid energy and information access point (HAP) in full-duplex mode. Each user has to transmit a certain amount of data with a transmission rate from a finite set of discrete rate levels, using the energy initially available in its battery and the energy it can harvest until the end of its transmission. Considering this model, we propose a novel discrete rate based minimum length scheduling problem to determine the optimal power control, rate adaptation and transmission schedule subject to data, energy causality and maximum transmit power constraints. The proposed optimization problem is proven to be NP-hard which requires exponential-time algorithms to solve for the global optimum. As a solution strategy, first, we demonstrate that the power control and rate adaptation, and scheduling problems can be solved separately in the optimal solution. For the power control and rate adaptation problem, we derive the optimal solution based on the proposed minimum length scheduling slot definition. For the scheduling, we classify the problem based on the distribution of minimum length scheduling slots of the users over time. For the non-overlapping slots scenario, we present the optimal scheduling algorithm. For the overlapping scenario, we propose a polynomial-time heuristic scheduling algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源