论文标题
Spotnet:自我发挥的多任务网络用于对象检测
SpotNet: Self-Attention Multi-Task Network for Object Detection
论文作者
论文摘要
当人类搜索不同类型的物体时,人类非常擅长将视觉关注转移到相关领域。例如,当我们搜索汽车时,我们将查看街道,而不是建筑物的顶部。本文的动机是训练网络通过多任务学习方法进行相同的操作。为了训练视觉关注,我们使用背景减法或光流,以半监督的方式产生前景/背景细分标签。使用这些标签,我们在共享大多数模型参数的同时训练对象检测模型以及在共享大多数模型参数的同时生成前景/背景分割图和边界框。我们使用网络中的那些分割图作为一种自我发挥的机制来加强用于生成边界框的特征图,从而减少了非相关区域的信号。我们表明,通过使用此方法,我们可以在两个流量监视数据集上获得大量的地图改进,并在UA-DETRAC和UAVDT上都具有最新的结果。
Humans are very good at directing their visual attention toward relevant areas when they search for different types of objects. For instance, when we search for cars, we will look at the streets, not at the top of buildings. The motivation of this paper is to train a network to do the same via a multi-task learning approach. To train visual attention, we produce foreground/background segmentation labels in a semi-supervised way, using background subtraction or optical flow. Using these labels, we train an object detection model to produce foreground/background segmentation maps as well as bounding boxes while sharing most model parameters. We use those segmentation maps inside the network as a self-attention mechanism to weight the feature map used to produce the bounding boxes, decreasing the signal of non-relevant areas. We show that by using this method, we obtain a significant mAP improvement on two traffic surveillance datasets, with state-of-the-art results on both UA-DETRAC and UAVDT.