论文标题

常规随机块模型中社区的独特性

Uniqueness of communities in regular stochastic block models

论文作者

Karmakar, Sayar, Podder, Moumanti

论文摘要

本文研究了包括\ emph {几个}社区的常规随机块模型:$ k $非重叠的社区中的每个社区,价格为$ k \ geqslant 3 $,具有$ n $的顶点,每个顶点都有$ d $ $ d $。群集内度(即\ \群集属于群集内的顶点的邻居数)和集群间度(即\ \群集内部与其自身群集中不同的邻居邻居的数量)的值可以在群体上变化。我们讨论了两个主要结果:第一个比较了我们的模型引起的概率度量与$ kn $顶点的$ d $期权图的均匀度量,第二个确定在相当弱的假设下,群集在相当弱的假设下肯定是$ n \ rightarrow \ rightarrow \ rightarrow \ rightarrow \ rightarrow \ infty \ infty $。

This paper studies the regular stochastic block model comprising \emph{several} communities: each of the $k$ non-overlapping communities, for $k \geqslant 3$, possesses $n$ vertices, each of which has total degree $d$. The values of the intra-cluster degrees (i.e.\ the number of neighbours of a vertex inside the cluster it belongs to) and the inter-cluster degrees (i.e.\ the number of neighbours of a vertex inside a cluster different from its own) are allowed to vary across clusters. We discuss two main results: the first compares the probability measure induced by our model with the uniform measure on the space of $d$-regular graphs on $kn$ vertices, and the second establishes that the clusters, under rather weak assumptions, are unique asymptotically almost surely as $n \rightarrow \infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源