论文标题
芳香树的通用前林哈特代数
The universal pre-Lie-Rinehart algebras of aromatic trees
论文作者
论文摘要
我们将彩色芳香树组织成带有自然痕迹图的前林德哈特代数(即无扭转的lie-rinehart代数),并在前lie-rinehart代数中显示了该物体的烦恼。这产生了芳族B系列的代数基础。
We organize colored aromatic trees into a pre-Lie-Rinehart algebra (i.e. a flat torsion-free Lie-Rinehart algebra) endowed with a natural trace map, and show the freeness of this object among pre-Lie-Rinehart algebras with trace. This yields the algebraic foundations of aromatic B-series.