论文标题
强力指望的后者作为G-priors的混合物
Power-Expected-Posterior Priors as Mixtures of g-Priors
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
One of the main approaches used to construct prior distributions for objective Bayes methods is the concept of random imaginary observations. Under this setup, the expected-posterior prior (EPP) offers several advantages, among which it has a nice and simple interpretation and provides an effective way to establish compatibility of priors among models. In this paper, we study the power-expected posterior prior as a generalization to the EPP in objective Bayesian model selection under normal linear models. We prove that it can be represented as a mixture of $g$-prior, like a wide range of prior distributions under normal linear models, and thus posterior distributions and Bayes factors are derived in closed form, keeping therefore computational tractability. Comparisons with other mixtures of $g$-prior are made and emphasis is given in the posterior distribution of g and its effect on Bayesian model selection and model averaging.