论文标题

Semi2i:遥感数据适应域适应的语义上一致的图像到图像翻译

SemI2I: Semantically Consistent Image-to-Image Translation for Domain Adaptation of Remote Sensing Data

论文作者

Tasar, Onur, Happy, S L, Tarabalka, Yuliya, Alliez, Pierre

论文摘要

尽管已证明卷积神经网络是从遥感图像中生成高质量图的有效工具,但是当训练和测试数据之间存在较大的域移动时,它们的性能会显着恶化。为了解决此问题,我们提出了一种新的数据增强方法,该方法将测试数据的样式转移到使用生成对抗网络的培训数据中。我们的语义细分框架包括先培训来自真实培训数据的U-NET,然后对拟议方法生成的测试风格化的假训练数据进行微调。我们的实验结果证明,我们的框架的表现优于现有域适应方法。

Although convolutional neural networks have been proven to be an effective tool to generate high quality maps from remote sensing images, their performance significantly deteriorates when there exists a large domain shift between training and test data. To address this issue, we propose a new data augmentation approach that transfers the style of test data to training data using generative adversarial networks. Our semantic segmentation framework consists in first training a U-net from the real training data and then fine-tuning it on the test stylized fake training data generated by the proposed approach. Our experimental results prove that our framework outperforms the existing domain adaptation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源