论文标题

从分数孤子到拓扑超导的范式模型,

From fractional solitons to Majorana fermions in a paradigmatic model of topological superconductivity

论文作者

Ziani, N. Traverso, Fleckenstein, C., Vigliotti, L., Trauzettel, B., Sassetti, M.

论文摘要

Majorana Bound状态是拓扑量子计算中应用的有趣候选者。因此,低能模型允许掌握其特性很重要。在这些模型中,通常情况下,存在两个相关的间隙阶段,这些阶段被无处不在。在其中一个阶段中,拓扑边界状态不存在,而另一个阶段则支持Majorana Bound State。我们表明,习惯模型违反了此范式。不应托管Majorana fermions的阶段支持仅一端定位的分数孤子。通过改变模型的参数,我们通过分析描述了分数孤子和两个Majorana fermions之间的过渡。此外,我们提供了模型的物理实现。我们进一步表征了超导配对的对称性,表明奇数频率成分与Majoraana波函数的空间曲线密切相关。

Majorana bound states are interesting candidates for applications in topological quantum computation. Low energy models allowing to grasp their properties are hence conceptually important. The usual scenario in these models is that two relevant gapped phases, separated by a gapless point, exist. In one of the phases, topological boundary states are absent, while the other one supports Majorana bound states. We show that a customary model violates this paradigm. The phase that should not host Majorana fermions supports a fractional soliton exponentially localized at only one end. By varying the parameters of the model, we describe analytically the transition between the fractional soliton and two Majorana fermions. Moreover, we provide a possible physical implementation of the model. We further characterize the symmetry of the superconducting pairing, showing that the odd-frequency component is intimately related to the spatial profile of the Majorana wavefunctions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源