论文标题
一心一意的代理商的最佳机制设计
Optimal Mechanism Design for Single-Minded Agents
论文作者
论文摘要
我们考虑在跨二维环境中的收入最佳机制设计,其中一个维度是买家的“价值”,一种是一种``类型'',它可以捕获一些辅助信息。一种设置是联邦快递问题,FGKK [2016]表征了单个代理的最佳机制。我们问:这样的特征可以走多远?特别是,我们考虑一心一意的代理商。卖方有异源物品。买方具有针对特定项目的特定子集的值v,并获得了(至少)(至少)S中的所有项目的值v。我们显示: 1。确定性机制对于满足“边际收入下降”(DMR)财产的分布非常最佳;我们给出了最佳机制的明确结构。 2。没有DMR,结果取决于代表类型中部分顺序的定向无环图(DAG)的结构。当DAG最多只能达到1时,我们表征了最佳机制A LA FedEx。 3。没有DMR,当DAG具有至少超过2的节点时,我们表明,在这种情况下,菜单复杂性是无限的:对于任何M,在(V,S)对上都存在分布,最佳机制的菜单复杂性至少为M. 4。对于3种类型的情况,我们表明,对于所有分布,存在有限菜单复杂性的最佳机制。这与2个添加剂异源物品或菜单复杂性可能是无数的[MV07; DDT15]。 此外,我们证明了多单元定价(无DMR)的最佳机制可能具有无限的菜单复杂性。我们还提出了一个扩展,其中最佳机制的菜单复杂性可以数量可计划,但不能算不可计。 这些结果共同确定了互合设置中的最佳机制比单维设置更丰富,但比多维设置更具结构化。
We consider revenue-optimal mechanism design in the interdimensional setting, where one dimension is the 'value' of the buyer, and one is a 'type' that captures some auxiliary information. One setting is the FedEx Problem, for which FGKK [2016] characterize the optimal mechanism for a single agent. We ask: how far can such characterizations go? In particular, we consider single-minded agents. A seller has heterogenous items. A buyer has a value v for a specific subset of items S, and obtains value v iff he gets (at least) all the items in S. We show: 1. Deterministic mechanisms are optimal for distributions that satisfy the "declining marginal revenue" (DMR) property; we give an explicit construction of the optimal mechanism. 2. Without DMR, the result depends on the structure of the directed acyclic graph (DAG) representing the partial order among types. When the DAG has out-degree at most 1, we characterize the optimal mechanism a la FedEx. 3. Without DMR, when the DAG has some node with out-degree at least 2, we show that in this case the menu complexity is unbounded: for any M, there exist distributions over (v,S) pairs such that the menu complexity of the optimal mechanism is at least M. 4. For the case of 3 types, we show that for all distributions there exists an optimal mechanism of finite menu complexity. This is in contrast to 2 additive heterogenous items or which the menu complexity could be uncountable [MV07; DDT15]. In addition, we prove that optimal mechanisms for Multi-Unit Pricing (without DMR) can have unbounded menu complexity. We also propose an extension where the menu complexity of optimal mechanisms can be countable but not uncountable. Together these results establish that optimal mechanisms in interdimensional settings are both much richer than single-dimensional settings, yet also vastly more structured than multi-dimensional settings.