论文标题

开发基于UNET的纬向前列腺分割的条件随机场插入物在T2加权MRI上的开发

Development of Conditional Random Field Insert for UNet-based Zonal Prostate Segmentation on T2-Weighted MRI

论文作者

Cao, Peng, Noworolski, Susan M., Starobinets, Olga, Korn, Natalie, Kramer, Sage P., Westphalen, Antonio C., Leynes, Andrew P., Pedoia, Valentina, Larson, Peder

论文摘要

目的:常规的2D UNET卷积神经网络(CNN)结构可能会导致分割输出中定义不定的边界。几项研究对UNET的每个级别施加了更强的限制,以提高2D UNET的性能,例如SEGNET。在这项研究中,我们研究了从临床T2加权MRI数据中进行的2D SEGNET和提议的条件随机场插入(CRFI),以分割纬向前列腺。 方法:我们引入了一种新方法,该方法结合了SEGNET和CRFI,以提高分割的准确性和鲁棒性。 CRFI具有反馈连接,可以鼓励在特征金字塔的多个级别上保持数据一致性。 CRFI在侦听的编码器侧,根据其空间局部相似性(例如可训练的双边滤波器)结合了输入特征图和卷积块输出。对于所有网络,使用725个2D图像(即29个MRI病例)用于培训;而在测试中使用了174个2D图像(即6例)。 结果:具有CRFI的塞格内特分别达到了外围区,中央区和整腺的相对较高的骰子系数(0.76、0.84和0.89)。与UNET相比,与SEGNET或UNET分割相比,SEGNET+CRFIS分割通常具有更高的骰子评分,并显示出确定解剖结构边界的鲁棒性。末尾具有CRFI的塞格内特显示CRFI可以纠正segnet输出的分割错误,从而为前列腺生成平滑且一致的分割。 结论:这项研究中证明的基于UNET的深神网络可以执行区域前列腺分割,与文献相比,可以实现高骰子系数。所提出的CRFI方法可以减少影响基线UNET和SEGNET模型分割性能的模糊边界。

Purpose: A conventional 2D UNet convolutional neural network (CNN) architecture may result in ill-defined boundaries in segmentation output. Several studies imposed stronger constraints on each level of UNet to improve the performance of 2D UNet, such as SegNet. In this study, we investigated 2D SegNet and a proposed conditional random field insert (CRFI) for zonal prostate segmentation from clinical T2-weighted MRI data. Methods: We introduced a new methodology that combines SegNet and CRFI to improve the accuracy and robustness of the segmentation. CRFI has feedback connections that encourage the data consistency at multiple levels of the feature pyramid. On the encoder side of the SegNet, the CRFI combines the input feature maps and convolution block output based on their spatial local similarity, like a trainable bilateral filter. For all networks, 725 2D images (i.e., 29 MRI cases) were used in training; while, 174 2D images (i.e., 6 cases) were used in testing. Results: The SegNet with CRFI achieved the relatively high Dice coefficients (0.76, 0.84, and 0.89) for the peripheral zone, central zone, and whole gland, respectively. Compared with UNet, the SegNet+CRFIs segmentation has generally higher Dice score and showed the robustness in determining the boundaries of anatomical structures compared with the SegNet or UNet segmentation. The SegNet with a CRFI at the end showed the CRFI can correct the segmentation errors from SegNet output, generating smooth and consistent segmentation for the prostate. Conclusion: UNet based deep neural networks demonstrated in this study can perform zonal prostate segmentation, achieving high Dice coefficients compared with those in the literature. The proposed CRFI method can reduce the fuzzy boundaries that affected the segmentation performance of baseline UNet and SegNet models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源