论文标题
超级芒福德形式和佐藤格拉曼尼亚
The Super Mumford Form and Sato Grassmannian
论文作者
论文摘要
我们描述了Kontsevich和Arbarello,de Concini,kac和Procesi的构建的超对称性概括,该概述利用了曲线模量空间与无限二维Sato Grassmannian之间的关系。我们的主要结果是在线条束上存在平坦的全态连接$λ_{3/2} \otimesλ_{1/2}^{ - 5} $在三倍的模量空间上:超级Riemann Surface,一个Neveu-Schwarz Puncture和正式坐标系统。对于超级黎曼表面的家族,我们还证明了超符号的正常化引理。
We describe a supersymmetric generalization of the construction of Kontsevich and Arbarello, De Concini, Kac, and Procesi, which utilizes a relation between the moduli space of curves with the infinite-dimensional Sato Grassmannian. Our main result is the existence of a flat holomorphic connection on the line bundle $λ_{3/2}\otimesλ_{1/2}^{-5}$ on the moduli space of triples: a super Riemann surface, a Neveu-Schwarz puncture, and a formal coordinate system. We also prove a superconformal Noether normalization lemma for families of super Riemann surfaces.