论文标题

高斯预释放有限人口因果推断

Gaussian Prepivoting for Finite Population Causal Inference

论文作者

Cohen, Peter L., Fogarty, Colin B.

论文摘要

在有限种群的因果推理中,可以为尖锐的无效假设构建精确的随机测试,即完全指出缺失潜在结果的假设。通常,对于弱零,通常需要推断,即治疗效果的样本平均值具有特定值,同时未指定的特定于受试者的治疗效果。如果没有适当的护理,对尖锐的无效假设有效的测试可能只有弱零,则可能是较弱的,在实践中部署随机测试时会产生误解的风险。我们开发了一个通用框架,用于统一尖锐和弱空的推断模式,其中单个过程同时提供了尖锐的零值的精确推断,并且对弱空的渐近有效推断。为此,我们基于预分割的测试统计量采用随机测试,其中最初是通过适当构建的累积分布函数转换的测试统计量,并且假设列出了尖锐的空,则其随机分布及其随机分布。对于大量常用的测试统计数据,我们表明,可以通过基于适当构造的协方差估计器采用基于样本的高斯措施的推动力来实现预分发。从本质上讲,该方法列举了p值的随机分布(假设较高的零),用于在弱零下已知有效的大样本测试,并使用所得的随机分布来执行推理。该方法的多功能性是通过许多示例来证明的,包括重读设计和完全随机设计中的回归调整估计量。

In finite population causal inference exact randomization tests can be constructed for sharp null hypotheses, i.e. hypotheses which fully impute the missing potential outcomes. Oftentimes inference is instead desired for the weak null that the sample average of the treatment effects takes on a particular value while leaving the subject-specific treatment effects unspecified. Without proper care, tests valid for sharp null hypotheses may be anti-conservative should only the weak null hold, creating the risk of misinterpretation when randomization tests are deployed in practice. We develop a general framework for unifying modes of inference for sharp and weak nulls, wherein a single procedure simultaneously delivers exact inference for sharp nulls and asymptotically valid inference for weak nulls. To do this, we employ randomization tests based upon prepivoted test statistics, wherein a test statistic is first transformed by a suitably constructed cumulative distribution function and its randomization distribution assuming the sharp null is then enumerated. For a large class of commonly employed test statistics, we show that prepivoting may be accomplished by employing the push-forward of a sample-based Gaussian measure based upon a suitably constructed covariance estimator. In essence, the approach enumerates the randomization distribution (assuming the sharp null) of a P-value for a large-sample test known to be valid under the weak null, and uses the resulting randomization distribution to perform inference. The versatility of the method is demonstrated through a host of examples, including rerandomized designs and regression-adjusted estimators in completely randomized designs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源