论文标题
在英国生物库MRI上具有可解释的神经网络回归的大型生物特征
Large-scale biometry with interpretable neural network regression on UK Biobank body MRI
论文作者
论文摘要
在一项大规模的医学检查中,英国生物银行研究成功地对32,000多名志愿者参与者进行了磁共振成像(MRI)。每次扫描都与广泛的元数据有关,对成像解剖结构和相关健康状况提供了全面的医学调查。尽管具有研究的潜力,但这些数据大量数据还是对已建立的评估方法的挑战,这些方法通常依赖于手动输入。迄今为止,心血管和代谢风险因素的参考值范围是不完整的。在这项工作中,对神经网络进行了基于图像的回归训练,以自动从颈部到膝关节MRI推断各种生物指标。该方法不需要手动干预或直接访问培训的参考细分。检查的字段跨越了从人体测量值,双能X射线吸收仪(DXA),基于ATLAS的分段和专用肝脏扫描得出的64个变量。使用RESNET50,标准化框架在交叉验证中与目标值(中位r^2> 0.97)非常吻合。总体显着图的解释表明,网络正确针对特定的身体区域和四肢,并学会了模仿不同的方式。在几个身体组成指标上,预测的质量在既定的黄金标准技术之间观察到的可变性范围内。
In a large-scale medical examination, the UK Biobank study has successfully imaged more than 32,000 volunteer participants with magnetic resonance imaging (MRI). Each scan is linked to extensive metadata, providing a comprehensive medical survey of imaged anatomy and related health states. Despite its potential for research, this vast amount of data presents a challenge to established methods of evaluation, which often rely on manual input. To date, the range of reference values for cardiovascular and metabolic risk factors is therefore incomplete. In this work, neural networks were trained for image-based regression to infer various biological metrics from the neck-to-knee body MRI automatically. The approach requires no manual intervention or direct access to reference segmentations for training. The examined fields span 64 variables derived from anthropometric measurements, dual-energy X-ray absorptiometry (DXA), atlas-based segmentations, and dedicated liver scans. With the ResNet50, the standardized framework achieves a close fit to the target values (median R^2 > 0.97) in cross-validation. Interpretation of aggregated saliency maps suggests that the network correctly targets specific body regions and limbs, and learned to emulate different modalities. On several body composition metrics, the quality of the predictions is within the range of variability observed between established gold standard techniques.