论文标题
多层基因组网络中的贝叶斯结构学习
Bayesian Structure Learning in Multi-layered Genomic Networks
论文作者
论文摘要
由多个基因组平台引起的数据的整合网络建模提供了对交互式系统的整体图景的见解,以及包括癌症在内的许多疾病领域的信息流。基本数据结构由每个主题的一系列层次排序的数据集组成,这些序列促进了各种输入的整合,例如基因组,转录组和蛋白质组学数据。在这种情况下,主要的分析任务是对网络的分层体系结构进行建模,其中可以将顶点自然划分为有序的层,该层由多个平台决定,并表现出无向和有向的关系。我们提出了一个多层高斯图形模型(MLGGM),以研究人类癌症中这种多层基因组网络中的条件独立性结构。我们基于可变选择技术实现了贝叶斯节点选择(BAN)方法,该技术一致地说明了MLGGM中多种类型的依赖项;这种灵活的策略利用了特定于边缘的先验知识,并选择了稀疏和可解释的模型。通过在各种情况下生成的模拟数据,我们证明禁止其他现有的基于多元回归的方法。我们针对多种癌症类型的关键信号通路的整合基因组网络分析突出了p53综合网络的共同点和差异,以及BRCA2对p53的表观遗传效应及其与T68磷酸化CHK2的相互作用,这些磷酸化CHK2可能具有转化的生物标志物和治疗靶标的翻译效用。
Integrative network modeling of data arising from multiple genomic platforms provides insight into the holistic picture of the interactive system, as well as the flow of information across many disease domains including cancer. The basic data structure consists of a sequence of hierarchically ordered datasets for each individual subject, which facilitates integration of diverse inputs, such as genomic, transcriptomic, and proteomic data. A primary analytical task in such contexts is to model the layered architecture of networks where the vertices can be naturally partitioned into ordered layers, dictated by multiple platforms, and exhibit both undirected and directed relationships. We propose a multi-layered Gaussian graphical model (mlGGM) to investigate conditional independence structures in such multi-level genomic networks in human cancers. We implement a Bayesian node-wise selection (BANS) approach based on variable selection techniques that coherently accounts for the multiple types of dependencies in mlGGM; this flexible strategy exploits edge-specific prior knowledge and selects sparse and interpretable models. Through simulated data generated under various scenarios, we demonstrate that BANS outperforms other existing multivariate regression-based methodologies. Our integrative genomic network analysis for key signaling pathways across multiple cancer types highlights commonalities and differences of p53 integrative networks and epigenetic effects of BRCA2 on p53 and its interaction with T68 phosphorylated CHK2, that may have translational utilities of finding biomarkers and therapeutic targets.