论文标题
Kerr-Newman Spacetime的电磁刺耳扰动:Teukolsky和Regge-wheeler方程
Electromagnetic-gravitational perturbations of Kerr-Newman spacetime: the Teukolsky and Regge-Wheeler equations
论文作者
论文摘要
我们得出了控制Kerr-Newman时空与电磁磁性扰动的线性稳定性的方程。该方程将著名的Teukolsky方程概括用于Kerr的曲率扰动,以及Reissner-Nordström的度量扰动的Regge-Wheeler方程。由于Chandrasekhar所说,由于“自旋-1和Spin-2场之间的耦合之间的明显不可分解性”,因此无法通过模式中的标准分解获得Kerr-Newman时空的稳定性。由于不可能将引力和电磁场的模式解),因此以前尚未得出管理Kerr-Newman线性稳定性的方程。使用适用于Kerr的张力方法,我们生成了一组广义的regge-wheeler方程,以用于Kerr-Newman的扰动,这些方程适用于通过物理空间方法研究线性化稳定性的研究。物理空间分析克服了自旋-1和自旋2场耦合的问题,并代表了迈向凯尔 - 纽曼黑洞稳定性的分析证明的第一步。
We derive the equations governing the linear stability of Kerr-Newman spacetime to coupled electromagnetic-gravitational perturbations. The equations generalize the celebrated Teukolsky equation for curvature perturbations of Kerr, and the Regge-Wheeler equation for metric perturbations of Reissner-Nordström. Because of the "apparent indissolubility of the coupling between the spin-1 and spin-2 fields", as put by Chandrasekhar, the stability of Kerr-Newman spacetime can not be obtained through standard decomposition in modes. Due to the impossibility to decouple the modes of the gravitational and electromagnetic fields, the equations governing the linear stability of Kerr-Newman have not been previously derived. Using a tensorial approach that was applied to Kerr, we produce a set of generalized Regge-Wheeler equations for perturbations of Kerr-Newman, which are suitable for the study of linearized stability by physical space methods. The physical space analysis overcomes the issue of coupling of spin-1 and spin-2 fields and represents the first step towards an analytical proof of the stability of the Kerr-Newman black hole.