论文标题

相关感知的深层生成模型,用于无监督的异常检测

Correlation-aware Deep Generative Model for Unsupervised Anomaly Detection

论文作者

Fan, Haoyi, Zhang, Fengbin, Wang, Ruidong, Xi, Liang, Li, Zuoyong

论文摘要

无监督的异常检测旨在从高度复杂和非结构化的数据中识别出异常样本,这在基本研究和工业应用中都是无处不在的。但是,大多数现有方法忽略了数据样本之间的复杂相关性,这对于捕获异常偏差的正常模式很重要。在本文中,我们提出了一种通过Deep Gaussian混合模型(CADGMM)意识到无监督的异常检测方法的方法,该模型捕获了数据点之间的复杂相关性,以实现高质量的低维表示学习。具体而言,数据样本之间的关系首先以图形结构的形式相关联,其中节点表示样品,边缘表示来自特征空间的两个样本之间的相关性。然后,使用图形编码器和特征编码器组成的双重编码器,用于将样品的特征和相关信息编码到共同的低维潜在空间中,然后是数据重建的解码器。最后,利用一个单独的估计网络作为高斯混合模型来估计学习潜在载体的密度,并且可以通过测量样品的能量来检测异常。对现实世界数据集的广泛实验证明了该方法的有效性。

Unsupervised anomaly detection aims to identify anomalous samples from highly complex and unstructured data, which is pervasive in both fundamental research and industrial applications. However, most existing methods neglect the complex correlation among data samples, which is important for capturing normal patterns from which the abnormal ones deviate. In this paper, we propose a method of Correlation aware unsupervised Anomaly detection via Deep Gaussian Mixture Model (CADGMM), which captures the complex correlation among data points for high-quality low-dimensional representation learning. Specifically, the relations among data samples are correlated firstly in forms of a graph structure, in which, the node denotes the sample and the edge denotes the correlation between two samples from the feature space. Then, a dual-encoder that consists of a graph encoder and a feature encoder, is employed to encode both the feature and correlation information of samples into the low-dimensional latent space jointly, followed by a decoder for data reconstruction. Finally, a separate estimation network as a Gaussian Mixture Model is utilized to estimate the density of the learned latent vector, and the anomalies can be detected by measuring the energy of the samples. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源