论文标题

RESILINET:分布式神经网络中的失败弹性推断

ResiliNet: Failure-Resilient Inference in Distributed Neural Networks

论文作者

Yousefpour, Ashkan, Nguyen, Brian Q., Devic, Siddartha, Wang, Guanhua, Kreidieh, Aboudy, Lobel, Hans, Bayen, Alexandre M., Jue, Jason P.

论文摘要

联合学习旨在训练分布的深层模型,而无需与中央服务器共享原始数据。同样,在神经网络的分布式推理中,通过对网络进行分区并将其分配到几个物理节点上,激活和梯度在物理节点之间而不是原始数据之间进行交换。然而,当神经网络分配并分布在物理节点之间时,物理节点的失败会导致放置在这些节点上的神经单元的失败,从而导致性能下降。当前的方法着重于分布式神经网络中培训的弹性。但是,探索分布式神经网络中推断的弹性较少。我们介绍了Resilinet,这是一种对分布式神经网络进行推理的方案,该神经网络对物理节点失败有弹性。 Resilinet结合了两个概念以提供弹性:跳过超连接,这是一个类似于分布式神经网络中类似于Resnets中的跳过连接的分布式神经网络中节点的概念,以及一种称为Failout的新技术,该技术在本文中引入。 Failout模拟了使用辍学期间训练期间的物理节点故障条件,并专门设计用于提高分布式神经网络的弹性。实验和使用三个数据集消融研究的结果证实了Resilinet为分布式神经网络提供推理弹性的能力。

Federated Learning aims to train distributed deep models without sharing the raw data with the centralized server. Similarly, in distributed inference of neural networks, by partitioning the network and distributing it across several physical nodes, activations and gradients are exchanged between physical nodes, rather than raw data. Nevertheless, when a neural network is partitioned and distributed among physical nodes, failure of physical nodes causes the failure of the neural units that are placed on those nodes, which results in a significant performance drop. Current approaches focus on resiliency of training in distributed neural networks. However, resiliency of inference in distributed neural networks is less explored. We introduce ResiliNet, a scheme for making inference in distributed neural networks resilient to physical node failures. ResiliNet combines two concepts to provide resiliency: skip hyperconnection, a concept for skipping nodes in distributed neural networks similar to skip connection in resnets, and a novel technique called failout, which is introduced in this paper. Failout simulates physical node failure conditions during training using dropout, and is specifically designed to improve the resiliency of distributed neural networks. The results of the experiments and ablation studies using three datasets confirm the ability of ResiliNet to provide inference resiliency for distributed neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源