论文标题
我们可以克服高质量的中微子地板吗?
Can we overcome the neutrino floor at high masses?
论文作者
论文摘要
中微子地板是弱相互作用的巨大颗粒(WIMP)的参数空间中的障碍,由于中微子几乎不可还原背景,发现了发现。方向性气体时间投影室可以区分太阳中微子,这与wimp块$ \ lyssim $ 10 GEV有关。在较高质量的情况下,$ \ gtrsim $ 100 GEV,地板是由大气中微子的背景设置的。在地板的这一部分下方进行探测将需要非常大的目标曝光。由于基于气体的探测器在此规模上会非常大,因此我们重新评估了液体贵族实验的前景,以探测中微子地板以下的探测。我们结合了减去中微子背景的所有潜在方法,以确定这些难以到达的地方,但动机良好的参数空间是可行的。最值得注意的是,我们量化了Xenon和Argon实验中提出的定向信号,称为“柱状重组”可以帮助完成此任务。我们发现,即使超出当前的实验结果,这种效果的强度被放大了,重组信号中包含的定向信息的量太低,无法现实地歧视大气中微子背景。取而代之的是,从沙丘和Juno等实验中,从中微子通量的精制测量中受益,将是将直接的WIMP搜索推向中微子地板以下的最实际手段。为了对氙气和氩实验进行最终的全球协调,我们表明中微子地板是一个可克服的障碍。最终,直接检测100个GEV尺寸的超对称性通过wimps可能会触及。
The neutrino floor is a barrier in the parameter space of weakly interacting massive particles (WIMPs) below which discovery is impeded due to an almost irreducible background of neutrinos. Directional gas time projection chambers could discriminate against solar neutrinos, relevant for WIMP masses $\lesssim$10 GeV. At higher masses $\gtrsim$100 GeV the floor is set by the background of atmospheric neutrinos. Probing below this part of the floor would require very large target exposures. Since gas-based detectors would be prohibitively large at this scale, we instead reevaluate the prospects for liquid noble experiments to probe below the neutrino floor. We combine all potential methods of subtracting the neutrino background to determine how much of this difficult to reach, but well-motivated, parameter space it is feasible to reach. Most notably, we quantify whether a proposed directional signal in xenon and argon experiments called "columnar recombination" can help in this task. We find that even if the strength of this effect is amplified beyond current experimental results, the quantity of directional information contained in the recombination signal is too low to realistically discriminate against the atmospheric neutrino background. Instead, benefiting from the refined measurements of neutrino fluxes by experiments such as DUNE and JUNO will be the most practical means to push direct WIMP searches below the neutrino floor. For an ultimate global coordination of xenon and argon experiments, we show that the neutrino floor is a surmountable barrier. The direct detection of 100 GeV-scale supersymmetric WIMPs may, eventually, be within reach.