论文标题
阿兹台克钻石的波动通过Minkowski 3空间中的太空状最大表面
Fluctuations in the Aztec diamonds via a space-like maximal surface in Minkowski 3-space
论文作者
论文摘要
我们通过三维Minkowski空间$ \ mathbb {r}^{2,1} $在同质的阿兹台克钻石中的缩放限制的缩放限制的新描述。该表面自然显示为与阿兹台克钻石的对称T型物相关的折纸图的极限,这拟合了最近在Arxiv中开发的框架:2109.06272。
We provide a new description of the scaling limit of dimer fluctuations in homogeneous Aztec diamonds via the intrinsic conformal structure of a space-like maximal surface in the three-dimensional Minkowski space $\mathbb{R}^{2,1}$. This surface naturally appears as the limit of the graphs of origami maps associated to symmetric t-embeddings of Aztec diamonds, fitting the framework recently developed in arXiv:2109.06272.