论文标题

地铁乘客流量预测的Adaensemble学习方法

AdaEnsemble Learning Approach for Metro Passenger Flow Forecasting

论文作者

Sun, Shaolong, Yang, Dongchuan, Guo, Ju-e, Wang, Shouyang

论文摘要

准确,及时的地铁乘客流量预测对于成功部署智能运输系统至关重要。但是,由于地铁乘客流的固有随机性和变化,提出一种有效且可靠的预测方法是非常具有挑战性的。在这项研究中,我们提出了一种新颖的自适应集合(Adaenseble)学习方法,以准确预测地铁乘客流量的数量,并结合了变异模式分解(VMD)的互补优势(季节性自动化综合综合移动平均(Sarima),Muttilayer Perceptron网络(MLP)和长期记忆(MLP)(MLP)存储(LSTM)。 Adaensemble学习方法包括三个重要阶段。第一阶段将VMD应用于将Metro乘客流数据分解为周期性组件,确定性组件和波动率组件。然后,我们采用Sarima模型来预测周期性组件,LSTM网络学习和预测确定性组件和MLP网络以预测波动率组件。在最后阶段,多样化的预测组件由另一个MLP网络重建。经验结果表明,我们提出的Adaensemble学习方法不仅与最先进的模型相比具有最佳的预测性能,而且基于深圳地铁系统中的历史乘客流量数据和多种标准评估措施,这似乎是最有希望和最强的。

Accurate and timely metro passenger flow forecasting is critical for the successful deployment of intelligent transportation systems. However, it is quite challenging to propose an efficient and robust forecasting approach due to the inherent randomness and variations of metro passenger flow. In this study, we present a novel adaptive ensemble (AdaEnsemble) learning approach to accurately forecast the volume of metro passenger flows, and it combines the complementary advantages of variational mode decomposition (VMD), seasonal autoregressive integrated moving averaging (SARIMA), multilayer perceptron network (MLP) and long short-term memory (LSTM) network. The AdaEnsemble learning approach consists of three important stages. The first stage applies VMD to decompose the metro passenger flows data into periodic component, deterministic component and volatility component. Then we employ SARIMA model to forecast the periodic component, LSTM network to learn and forecast deterministic component and MLP network to forecast volatility component. In the last stage, the diverse forecasted components are reconstructed by another MLP network. The empirical results show that our proposed AdaEnsemble learning approach not only has the best forecasting performance compared with the state-of-the-art models but also appears to be the most promising and robust based on the historical passenger flow data in Shenzhen subway system and several standard evaluation measures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源