论文标题

来自波导耦合应变 - 定位二维量子发射器的共振荧光

Resonance fluorescence from waveguide-coupled strain-localized two-dimensional quantum emitters

论文作者

Errando-Herranz, Carlos, Schöll, Eva, Picard, Raphaël, Laini, Micaela, Gyger, Samuel, Elshaari, Ali W., Branny, Art, Wennberg, Ulrika, Barbat, Sebastien, Renaud, Thibaut, Brotons-Gisbert, Mauro, Bonato, Cristian, Gerardot, Brian D., Zwiller, Val, Jöns, Klaus D.

论文摘要

有效的单光子发射器的片上整合为光子综合电路在量子技术中的应用施加了主要的瓶颈。令人振奋的固态发射器正在作为近乎最佳的量子光源出现,即使不是由于当前设备的可扩展性。当前的集成方法依赖于光子综合电路中具有成本范围的个体发射器放置,这使应用程序不可能。一个有希望的可扩展平台基于二维(2D)半导体。然而,事实证明,波导耦合2D发射器的共振激发和单光子发射是难以捉摸的。在这里,我们使用氮化硅光子波导显示了一种可扩展的方法,以同时将单光子发射器从能醛烷(WSE2)单层产生应变,并将它们搭配到波导模式。我们通过测量G $^{(2)}(0)= 0.150 \ pm0.093 $的二阶自相关并执行芯片谐振激发产生A G $^{(2)(2)}(0)= 0.377 = 0.377 \ pm0.081 $。我们的结果是在可伸缩光子量子电路中相干控制量子状态和高质量单光子的多路复用的重要步骤。

Efficient on-chip integration of single-photon emitters imposes a major bottleneck for applications of photonic integrated circuits in quantum technologies. Resonantly excited solid-state emitters are emerging as near-optimal quantum light sources, if not for the lack of scalability of current devices. Current integration approaches rely on cost-inefficient individual emitter placement in photonic integrated circuits, rendering applications impossible. A promising scalable platform is based on two-dimensional (2D) semiconductors. However, resonant excitation and single-photon emission of waveguide-coupled 2D emitters have proven to be elusive. Here, we show a scalable approach using a silicon nitride photonic waveguide to simultaneously strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode. We demonstrate the guiding of single photons in the photonic circuit by measuring second-order autocorrelation of g$^{(2)}(0)=0.150\pm0.093$ and perform on-chip resonant excitation yielding a g$^{(2)}(0)=0.377\pm0.081$. Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源