论文标题

旋转玻色子模型的恰好热量子动力学耦合到耗散环境

Exactly Thermalised Quantum Dynamics of the Spin-Boson Model coupled to a Dissipative Environment

论文作者

Lane, M. A., Matos, D., Ford, I. J., Kantorovich, L.

论文摘要

我们介绍了扩展的随机liouville-von neumann方程(ESLN)方法[PRB 95,125124(2017); PRB 97,224310(2018)],描述了精确的热量量子系统的动力学,降低了密度矩阵与非马克维亚谐波环境耦合。至关重要的是,在应用实时演变之前,使用假想的时间演化过程在有限温度下完全耦合到其环境的开放系统的组合系统会在有限温度下进行热效。这是在正确的规范平衡状态下初始化的组合系统,而不是最初解耦。我们将理论应用于自旋 - 玻色孔哈密顿量,并开发出许多竞争性的ESLN变体,旨在减少开放系统密度矩阵的痕迹的数值差异。我们发现,仔细选择驾驶噪声对于改善数值稳定性至关重要。我们还研究了将高阶数值方案应用于求解随机微分方程(例如Stratonovich-heun方案)的效果,并得出结论,随机抽样占主导地位,与与数值方案相关的改进占主导地位,而与数值相关的改进则不太重要,但在晚期需要进行。为了验证该方法及其数值实现,我们考虑在固定的哈密顿量下的进化,并表明该系统长期保持在很长时间的正确规范平衡状态。此外,考虑了非平衡系统下开放系统的演变(LZ)驾驶,并且观察到渐近收敛到LZ极限,以消失系统 - 环境偶联和温度。当耦合和温度非零时,在过去,最初在有限的时间对组合系统进行热疗,发现与纯状态相比,真实LZ初始状态的近似值更好。

We present an application of the Extended Stochastic Liouville-von Neumann equations (ESLN) method introduced earlier [PRB 95, 125124 (2017); PRB 97, 224310 (2018)] which describes the dynamics of an exactly thermalised open quantum system reduced density matrix coupled to a non-Markovian harmonic environment. Critically, the combined system of the open system fully coupled to its environment is thermalised at finite temperature using an imaginary time evolution procedure before the application of real time evolution. This initialises the combined system in the correct canonical equilibrium state rather than being initially decoupled. We apply our theory to the spin-boson Hamiltonian and develop a number of competing ESLN variants designed to reduce the numerical divergence of the trace of the open system density matrix. We find that a careful choice of the driving noises is essential for improving numerical stability. We also investigate the effect of applying higher order numerical schemes for solving stochastic differential equations, such as the Stratonovich-Heun scheme, and conclude that stochastic sampling dominates convergence with the improvement associated with the numerical scheme being less important for short times but required for late times. To verify the method and its numerical implementation, we consider evolution under a fixed Hamiltonian and show that the system either remains in, or approaches, the correct canonical equilibrium state at long times. Additionally, evolution of the open system under non-equilibrium Landau-Zener (LZ) driving is considered and the asymptotic convergence to the LZ limit was observed for vanishing system-environment coupling and temperature. When coupling and temperature are non-zero, initially thermalising the combined system at a finite time in the past was found to be a better approximation of the true LZ initial state than a pure state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源