论文标题
超现实有序指数域
Surreal ordered exponential fields
论文作者
论文摘要
在[26]中,J。H。Conway的订购字段$ \ mathbf {no} $ of超现实数字的代数理论简单性层次结构被带到了超现实数字,并采用了为订单的订单($ k $ - vector Space)提供必要和充分的条件,以使其成为初始子属($ k $ k $ -s-k $ -Sspace) $ \ mathbf {no} $,即$ \ mathbf {no} $的子场($ k $ -subspace),这是$ \ mathbf {no} $的初始子树。在[15]的续集中,在刚提起的结果上背负了类似的结果,用于有序的指数字段,利用了Schmeling对跨系列场的概念的轻微概括。进一步表明,广泛的有序指数字段与$(\ Mathbf {no},\ exp)$的初始指数子字段是同构。其中包括$ t(\ mathbb {r} _W,e^x)$的所有型号,其中$ \ mathbb {r} _w $是由收敛的WeierStrass System $ W $扩展的REALS。其中,我们称之为三角指数的那些字段受到特别关注。结果表明,$ \ mathbf {no} $的初始三角指数子字段上的指数函数,其中包括$ \ mathbf {no} $本身,扩展到其表面上的规范指数函数。订购指数字段$ \ Mathbb {t}^{le} $的典型图像的图像显示为初始化为$ \ Mathbf {no} $是初始的$ \ mathbb {r} \ langle \langleΩ\ rangle \ rangle $。
In [26], the algebraico-tree-theoretic simplicity hierarchical structure of J. H. Conway's ordered field $\mathbf{No}$ of surreal numbers was brought to the fore and employed to provide necessary and sufficient conditions for an ordered field (ordered $K$-vector space) to be isomorphic to an initial subfield ($K$-subspace) of $\mathbf{No}$, i.e. a subfield ($K$-subspace) of $\mathbf{No}$ that is an initial subtree of $\mathbf{No}$. In this sequel to [15], piggybacking on the just-said results, analogous results are established for ordered exponential fields, making use of a slight generalization of Schmeling's conception of a transseries field. It is further shown that a wide range of ordered exponential fields are isomorphic to initial exponential subfields of $(\mathbf{No}, \exp)$. These include all models of $T(\mathbb{R}_W, e^x)$, where $\mathbb{R}_W$ is the reals expanded by a convergent Weierstrass system $W$. Of these, those we call trigonometric-exponential fields are given particular attention. It is shown that the exponential functions on the initial trigonometric-exponential subfields of $\mathbf{No}$, which includes $\mathbf{No}$ itself, extend to canonical exponential functions on their surcomplex counterparts. The image of the canonical map of the ordered exponential field $\mathbb{T}^{LE}$ of logarithmic-exponential transseries into $\mathbf{No}$ is shown to be initial, as are the ordered exponential fields $\mathbb{R}((ω))^{EL}$ and $\mathbb{R}\langle\langleω\rangle \rangle$.