论文标题

概率上有缺陷的搜索

Probabilistically Faulty Searching on a Half-Line

论文作者

Bonato, Anthony, Georgiou, Konstantinos, MacRury, Calum, Pralat, Pawel

论文摘要

我们研究了$ p $ - foledy搜索,这是经典牛路优化问题的一种变体,其中单位速度机器人为隐藏物品搜索了半行(或$ 1 $ -ROA)。搜索者在概率上是错误的,并且每次访问的物品检测是一个独立的Bernoulli试验,其成功的可能性$ P $是已知的。目的是最大程度地减少预期检测时间的最坏情况,相对于隐藏物品到原点的距离。 GAL在1980年首次提出了同一问题的变体。然后在2003年,Alpern和Gal [搜索游戏和Rendezvous的理论]提出了一种所谓的单调解决方案,以搜索该产品线($ 2 $ - 乘积);也就是说,新搜索的空间在每个射线和每次迭代中单调增加的轨迹。此外,他们推测,$ 2 $ - 砂问题的最佳轨迹必须是单调的。当搜索域是半行($ 1 $ ray)时,我们反驳了这一猜想。我们为所有单调算法提供了下限,我们也与上限匹配。我们的主要贡献是对单调算法家庭之外的一系列精制搜索策略的设计和分析,我们称之为$ t $ -sub -sub-sonotone算法。这种算法会导致$ t $严格降低的性能,并且对于所有$ p \ in(0,1)$。从某种意义上说,$ t $的值量化的值是我们的算法偏离单调的多少,表明单调算法在搜索半行时是优势。

We study $p$-Faulty Search, a variant of the classic cow-path optimization problem, where a unit speed robot searches the half-line (or $1$-ray) for a hidden item. The searcher is probabilistically faulty, and detection of the item with each visitation is an independent Bernoulli trial whose probability of success $p$ is known. The objective is to minimize the worst case expected detection time, relative to the distance of the hidden item to the origin. A variation of the same problem was first proposed by Gal in 1980. Then in 2003, Alpern and Gal [The Theory of Search Games and Rendezvous] proposed a so-called monotone solution for searching the line ($2$-rays); that is, a trajectory in which the newly searched space increases monotonically in each ray and in each iteration. Moreover, they conjectured that an optimal trajectory for the $2$-rays problem must be monotone. We disprove this conjecture when the search domain is the half-line ($1$-ray). We provide a lower bound for all monotone algorithms, which we also match with an upper bound. Our main contribution is the design and analysis of a sequence of refined search strategies, outside the family of monotone algorithms, which we call $t$-sub-monotone algorithms. Such algorithms induce performance that is strictly decreasing with $t$, and for all $p \in (0,1)$. The value of $t$ quantifies, in a certain sense, how much our algorithms deviate from being monotone, demonstrating that monotone algorithms are sub-optimal when searching the half-line.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源