论文标题
恒定负RICCI曲率的完整鳍空间
Complete Finsler spaces of constant negative Ricci curvature
论文作者
论文摘要
在这里,使用投影不变的伪距离和Schwarzian衍生物,这表明每个连接的恒定负RICCI标量的完整鳍空间都是可逆的。特别是,每一个完整的randers cormci(或国旗)曲率的randers均为riemannian。
Here, using the projectively invariant pseudo-distance and Schwarzian derivative, it is shown that every connected complete Finsler space of the constant negative Ricci scalar is reversible. In particular, every complete Randers metric of constant negative Ricci (or flag) curvature is Riemannian.