论文标题

弦乐测量的空间有效确定性近似

Space Efficient Deterministic Approximation of String Measures

论文作者

Cheng, Kuan, Jin, Zhengzhong, Li, Xin, Zheng, Yu

论文摘要

我们研究了以下三个字符串测量的近似算法,这些算法在实践中广泛使用:编辑距离(ED),最长的常见子序列(LCS)和最长增加的序列(LIS)。所有三个问题都可以通过在多项式时间内使用的标准算法完全解决,其中大约$θ(n)$空间,其中$ n $是输入长度,我们的目标是设计确定性近似算法,这些算法在多项式时间内运行,空间较小。 为此,我们设计了几种算法,这些算法对于所有三个问题都达到了$ 1+ε$或$1-ε$的近似,其中$ε> 0 $可以是任何常数,甚至略微降低的常数。我们的算法是灵活的,可以调整以实现以下两个参数范围:1)对于任何常数$δ> 0 $,space $ n^δ$,运行时间基本上与标准算法基本相同或略大;和2)空格$ \ mathsf {polylog}(n)$带有(较大的)多项式运行时间,这在史蒂夫的类(\ textbf {sc})中放置了三个问题的近似版本。我们的算法在空间复杂性方面显着改善了先前的结果,在该算法中,所有已知结果都需要使用至少$ω(\ sqrt {n})$。我们的某些算法也可以适用于在非对称流模型[SS13]中起作用,并输出相应的序列。此外,我们的结果可用于改善Farhadi ET的最新结果。 al。 [FHRS20]大约在非对称流模型中近似ED,从[FHRS20]中的指数缩短到多项式。 我们的算法基于使用递归如Savitch定理[SAV70]的想法,以及对以前的技术进行仔细改编以使递归起作用。一路上,我们还从最长的共同子角度减少了新的日志空间,从最长的序列增加了,这可能是独立的。

We study approximation algorithms for the following three string measures that are widely used in practice: edit distance (ED), longest common subsequence (LCS), and longest increasing sequence (LIS). All three problems can be solved exactly by standard algorithms that run in polynomial time with roughly $Θ(n)$ space, where $n$ is the input length, and our goal is to design deterministic approximation algorithms that run in polynomial time with significantly smaller space. Towards this, we design several algorithms that achieve $1+ε$ or $1-ε$ approximation for all three problems, where $ε>0$ can be any constant and even slightly sub constant. Our algorithms are flexible and can be adjusted to achieve the following two regimes of parameters: 1) space $n^δ$ for any constant $δ>0$ with running time essentially the same as or slightly more than the standard algorithms; and 2) space $\mathsf{polylog}(n)$ with (a larger) polynomial running time, which puts the approximation versions of the three problems in Steve's class (\textbf{SC}). Our algorithms significantly improve previous results in terms of space complexity, where all known results need to use space at least $Ω(\sqrt{n})$. Some of our algorithms can also be adapted to work in the asymmetric streaming model [SS13], and output the corresponding sequence. Furthermore, our results can be used to improve a recent result by Farhadi et. al. [FHRS20] about approximating ED in the asymmetric streaming model, reducing the running time from being exponential in [FHRS20] to a polynomial. Our algorithms are based on the idea of using recursion as in Savitch's theorem [Sav70], and a careful adaption of previous techniques to make the recursion work. Along the way we also give a new logspace reduction from longest common subsequence to longest increasing sequence, which may be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源