论文标题

一个基于环境信号的层次结构框架,并通过探索隐藏的准分子串行

A Hierarchical Framework for Ambient Signals based Load Modeling with Exploring the Hidden Quasi-convexity

论文作者

Zhang, Xinran, Hill, David J., Lu, Chao, Song, Yue

论文摘要

负载建模是建模电源系统的重要问题。最近提出了基于环境信号的负载建模(ASLM)的方法,以更好地跟踪负载模型的随时间变化。为了提高计算效率和模型结构复杂性,本文提出了ASLM的层次结构框架。通过此框架,首次探索了负载建模问题的隐藏的准串联性,并且可以应用更复杂的静态负载模型结构。在上阶段,动态负载参数的识别被认为是优化问题。在较低的阶段,对于给定的一组动态载荷参数,通过线性回归获得了最佳静态负载参数。之后,回归残差被视为上阶段优化问题的目标函数。案例研究验证了所提出的方法,导致广东电网。结果表明,在感应电动机模型转换后,OS大多是准凸vex,这为应用基于梯度的优化算法提供了基础。案例研究结果还验证了所提出的方法与先前的ASLM方法相比具有更好的计算效率和模型结构复杂性。

Load modeling is an important issue in modeling a power system. The approach of ambient signals-based load modeling (ASLM) was recently proposed to better track the time-varying changes of load models. To improve computation efficiency and model structure complexity, a hierarchical framework for ASLM is proposed in this paper. Through this framework, the hidden quasi-convexity of load modeling problem is explored for the first time, and more complicated static load model structures can be applied. In the upper stage, the identification of dynamic load parameters is regarded as an optimization problem. In the lower stage, the optimal static load parameters are obtained through linear regression for a given group of dynamic load parameters. Afterwards, the regression residuals are regarded as the objective function (OF) of the upper stage optimization problem. The proposed method is validated by the case study results in Guangdong Power Grid. The results have shown that the OF is mostly quasi-convex after the transformation of induction motor model, which provides the basis for the application of gradient-based optimization algorithm. The case study results also validate that the proposed approach has better computation efficiency and model structure complexity compared with the previous ASLM approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源