论文标题
Frameaxis:用单词嵌入来表征微框的偏见和强度
FrameAxis: Characterizing Microframe Bias and Intensity with Word Embedding
论文作者
论文摘要
框架是一个强调问题的某些方面而不是其他问题的过程,即使没有提出偏见的论点,也将读者或听众推荐了问题上的不同立场。 {在这里,我们提出了Frameaxis,这是一种通过识别使用Word Embedding在文本中过度代表的最相关的语义轴(“ Microframes”)来表征文档的方法。我们的无监督方法可以很容易地应用于大型数据集,因为它不需要手动注释。它还可以通过考虑一组丰富的语义轴来提供细微的见解。 Frameaxis旨在定量逗弄文本中如何使用微框的两个重要维度。 \ textit {microframe bias}捕获了文本在某个微框架上的偏见,而\ textit {microframe intense}显示了如何使用某个微标志的主动。他们一起提供了文本的详细表征。我们证明,通过将Frameaxis应用于餐厅评论到政治新闻的多个数据集,可以将Frameaxis应用于多个数据集,以最高的偏见和强度与情感,主题和党派频谱保持一致。}现有领域知识可以通过使用自定义的微框架和使用Frameaxis进行frameaxis frameaxis {frameaxis {frameaxis {在单个单词和文档级别上的frameaxis。我们的方法可能会加速跨学科的框架的可扩展和复杂的计算分析。
Framing is a process of emphasizing a certain aspect of an issue over the others, nudging readers or listeners towards different positions on the issue even without making a biased argument. {Here, we propose FrameAxis, a method for characterizing documents by identifying the most relevant semantic axes ("microframes") that are overrepresented in the text using word embedding. Our unsupervised approach can be readily applied to large datasets because it does not require manual annotations. It can also provide nuanced insights by considering a rich set of semantic axes. FrameAxis is designed to quantitatively tease out two important dimensions of how microframes are used in the text. \textit{Microframe bias} captures how biased the text is on a certain microframe, and \textit{microframe intensity} shows how actively a certain microframe is used. Together, they offer a detailed characterization of the text. We demonstrate that microframes with the highest bias and intensity well align with sentiment, topic, and partisan spectrum by applying FrameAxis to multiple datasets from restaurant reviews to political news.} The existing domain knowledge can be incorporated into FrameAxis {by using custom microframes and by using FrameAxis as an iterative exploratory analysis instrument.} Additionally, we propose methods for explaining the results of FrameAxis at the level of individual words and documents. Our method may accelerate scalable and sophisticated computational analyses of framing across disciplines.