论文标题
Synfi:自动合成指纹生成
SynFi: Automatic Synthetic Fingerprint Generation
论文作者
论文摘要
基于人指纹的身份验证和识别方法在几种从政府组织到消费产品的系统中无处不在。此类系统的性能和可靠性直接依赖于已验证的数据量。不幸的是,由于许多隐私和安全问题,大量的指纹数据库无法公开使用。 在本文中,我们引入了一种新的方法,以自动生成高保真合成指纹。我们的方法依赖于(i)生成的对抗网络来估计人指纹的概率分布以及(ii)合成细粒纹理的超分辨率方法。我们严格测试我们的系统,并表明我们的方法是第一个生成指纹与真实的指纹无法区分的指纹,这是先前艺术无法完成的任务。
Authentication and identification methods based on human fingerprints are ubiquitous in several systems ranging from government organizations to consumer products. The performance and reliability of such systems directly rely on the volume of data on which they have been verified. Unfortunately, a large volume of fingerprint databases is not publicly available due to many privacy and security concerns. In this paper, we introduce a new approach to automatically generate high-fidelity synthetic fingerprints at scale. Our approach relies on (i) Generative Adversarial Networks to estimate the probability distribution of human fingerprints and (ii) Super-Resolution methods to synthesize fine-grained textures. We rigorously test our system and show that our methodology is the first to generate fingerprints that are computationally indistinguishable from real ones, a task that prior art could not accomplish.