论文标题

二阶条件梯度滑动

Second-order Conditional Gradient Sliding

论文作者

Carderera, Alejandro, Pokutta, Sebastian

论文摘要

当需要高精度解决方案时,由于其局部二次收敛而需要高精度解决方案时,受约束的二阶凸优化算法是选择方法。这些算法需要在每次迭代时解决约束二次子问题的解决方案。我们介绍\ emph {二阶条件梯度滑动}(SOCGS)算法,该算法使用无投射算法来求解受约束的二次典型子问题不明显。当可行区域是多层元素时,算法在有限数量的线性收敛迭代后,在原始间隙中二次收敛。一旦进入二次制度,SOCGS算法就需要$ \ MATHCAL {O}(\ log(\ log 1/\ varepsilon))$一阶和Hessian Oracle调用,以及$ \ Mathcal {o}(O}(O}(\ log log(\ varepsilon) $ \ varepsilon $ - 最佳解决方案。当只能通过线性优化的Oracle有效访问可行区域,并且计算功能的一阶信息(尽管可能)是昂贵的,则该算法很有用。

Constrained second-order convex optimization algorithms are the method of choice when a high accuracy solution to a problem is needed, due to their local quadratic convergence. These algorithms require the solution of a constrained quadratic subproblem at every iteration. We present the \emph{Second-Order Conditional Gradient Sliding} (SOCGS) algorithm, which uses a projection-free algorithm to solve the constrained quadratic subproblems inexactly. When the feasible region is a polytope the algorithm converges quadratically in primal gap after a finite number of linearly convergent iterations. Once in the quadratic regime the SOCGS algorithm requires $\mathcal{O}(\log(\log 1/\varepsilon))$ first-order and Hessian oracle calls and $\mathcal{O}(\log (1/\varepsilon) \log(\log1/\varepsilon))$ linear minimization oracle calls to achieve an $\varepsilon$-optimal solution. This algorithm is useful when the feasible region can only be accessed efficiently through a linear optimization oracle, and computing first-order information of the function, although possible, is costly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源