论文标题

ra在同质树上变化

Radon transforms on homogeneous trees

论文作者

Tarabusi, Enrico Casadio, Gindikin, Simon G., Picardello, Massimo A.

论文摘要

我们研究了通过将均匀树T作为简单络合物而产生的不同halospherical ra的变化,其简单为顶点V,边缘E或flags f(标志是面向的边缘)。末端(从参考顶点开始的无限大地射线)为树提供了边界$ω$。然后,hospheres形成了一个琐碎的主纤维捆绑包,其基础$ω$和纤维$ \ mathz $。有三个这样的纤维束,由顶点,边缘或标志的holospheres组成,但它们是同构的:但是,这些纤维捆绑包的特殊部分与特殊部分之间没有同构(特殊部分由给定的顶点,边缘,边缘或旗帜组成)。纤维束的自动形态组包含一个亚组$ a $平行移位,类似于半神经组的cartan子组。 Laplace操作员在T上的归一化征函数是Poisson内核的复杂幂的边界积分,即$ a $的字符,并且是从Mackey(即所谓的球形表示)中$ a $ a $ a $ a的矩阵系数。 顶点 - 高圈ra的变换包括在每个顶点 - 马圈中对V的求和,而边缘或标志类似。我们证明了所有这些ra变换的反演公式,并将应用于谐波分析和T的Plancherel量度应用。我们通过积分几何显示了顶点和边缘的球形表示等效。另外,我们定义了ra后射击,并通过将其反向投影组成。这引起了T上的卷积运算符,其符号是通过球形傅立叶变换获得的,其倒数是rad式反转公式的象征。

We study the different horospherical Radon transforms that arise by regarding a homogeneous tree T as a simplicial complex whose simplices are vertices V, edges E or flags F (flags are oriented edges). The ends (infinite geodesic rays starting at a reference vertex) provide a boundary $Ω$ for the tree. Then the horospheres form a trivial principal fiber bundle with base $Ω$ and fiber $\mathZ$. There are three such fiber bundles, consisting of horospheres of vertices, edges or flags, but they are isomorphic: however, no isomorphism between these fiber bundles maps special sections to special sections (a special section consists of the set of horospheres through a given vertex, edge or flag). The groups of automorphisms of the fiber bundles contain a subgroup $A$ of parallel shifts, analogous to the Cartan subgroup of a semisimple group. The normalized eigenfunctions of the Laplace operator on T are boundary integrals of complex powers of the Poisson kernel, that is characters of $A$, and are matrix coefficients of representations induced from $A$ in the sense of Mackey, the so-called spherical representations. The vertex-horospherical Radon transform consists of summation over V in each vertex-horosphere, and similarly for edges or flags. We prove inversion formulas for all these Radon transforms, and give applications to harmonic analysis and the Plancherel measure on T. We show via integral geometry that the spherical representations for vertices and edges are equivalent. Also, we define the Radon back-projections and find the inversion operator of each Radon transform by composing it with its back-projection. This gives rise to a convolution operator on T, whose symbol is obtained via the spherical Fourier transform, and its reciprocal is the symbol of the Radon inversion formula.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源