论文标题
测量极化石墨烯中的拓扑不变
Measuring topological invariants in polaritonic graphene
论文作者
论文摘要
拓扑材料依赖于其批量能源带的工程全球性能,称为拓扑不变性。这些通常在整个Brillouin区域定义的不变性与受保护边缘状态的存在有关。然而,对于一类重要的汉密尔顿人,对应于具有时间反向和手性对称性的2D晶格(例如石墨烯),边缘状态的存在与未在完整的2D Brillouin区域中定义的不变性链接,而是在减少的1D子空间上定义的。在这里,我们基于合并的实地和动量空间测量,演示了一种新的方案,以直接在半导体微腔的晶格中直接访问这些1D拓扑不变性,从而限制了激子孔子。我们在模拟常规和批判性压缩石墨烯的物理学的阵列中提取这些不变性,因此狄拉克锥已合并。我们的方案提供了这些系统中散装对应关系的直接证据,并为探索更复杂的拓扑作用(例如涉及混乱和相互作用)打开了大门。
Topological materials rely on engineering global properties of their bulk energy bands called topological invariants. These invariants, usually defined over the entire Brillouin zone, are related to the existence of protected edge states. However, for an important class of Hamiltonians corresponding to 2D lattices with time-reversal and chiral symmetry (e.g. graphene), the existence of edge states is linked to invariants that are not defined over the full 2D Brillouin zone, but on reduced 1D sub-spaces. Here, we demonstrate a novel scheme based on a combined real- and momentum-space measurement to directly access these 1D topological invariants in lattices of semiconductor microcavities confining exciton-polaritons. We extract these invariants in arrays emulating the physics of regular and critically compressed graphene sucht that Dirac cones have merged. Our scheme provides a direct evidence of the bulk-edge correspondence in these systems, and opens the door to the exploration of more complex topological effects, for example involving disorder and interactions.