论文标题

通过语义子空间分析嵌入有效的句子

Efficient Sentence Embedding via Semantic Subspace Analysis

论文作者

Wang, Bin, Chen, Fenxiao, Wang, Yuncheng, Kuo, C. -C. Jay

论文摘要

在这项工作中提出了一种基于语义子空间分析的新型句子嵌入方法,称为语义子空间句子嵌入(S3E)。鉴于单词嵌入可以捕获语义关系的事实,而语义上相似的单词倾向于在高维嵌入空间中形成语义群,因此我们通过分析其构成单词的语义子空间来开发句子表示方案。具体来说,我们从两个方面构建了一个句子模型。首先,我们表示使用组内描述符在同一语义组中的单词。其次,我们表征了多个语义组与组间描述符之间的相互作用。在文本相似性任务和监督任务上都评估了所提出的S3E方法。实验结果表明,它比最先进的表现提供了可比或更好的性能。我们的S3E方法的复杂性也远低于其他参数化模型。

A novel sentence embedding method built upon semantic subspace analysis, called semantic subspace sentence embedding (S3E), is proposed in this work. Given the fact that word embeddings can capture semantic relationship while semantically similar words tend to form semantic groups in a high-dimensional embedding space, we develop a sentence representation scheme by analyzing semantic subspaces of its constituent words. Specifically, we construct a sentence model from two aspects. First, we represent words that lie in the same semantic group using the intra-group descriptor. Second, we characterize the interaction between multiple semantic groups with the inter-group descriptor. The proposed S3E method is evaluated on both textual similarity tasks and supervised tasks. Experimental results show that it offers comparable or better performance than the state-of-the-art. The complexity of our S3E method is also much lower than other parameterized models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源