论文标题

同种异体学和等级扰动差异:比较复杂系统的通用工具

Allotaxonometry and rank-turbulence divergence: A universal instrument for comparing complex systems

论文作者

Dodds, P. S., Minot, J. R., Arnold, M. V., Alshaabi, T., Adams, J. L., Dewhurst, D. R., Gray, T. J., Frank, M. R., Reagan, A. J., Danforth, C. M.

论文摘要

复杂的系统通常包含许多种类的组成部分,这些组件的大小在许多数量级上有所不同:国家的城市人口,经济中的个人和企业财富,生态的物种丰度,自然语言中的单词频率以及复杂网络中的节点学位。在这里,我们介绍了“同型驱动器”(RTD)(RTD),这是一种可调仪器,可调节任何两个排名的组件列表。我们通过一系列步骤在分析上开发基于等级的差异,然后建立基于等级的同轴仪,该仪表仪将级别的直方图配对,将等级级对的直方图与根据Divergence贡献的有序组件列表配对。我们探讨了等级扰动差异的性能,我们将其视为“类型微积分”的工具,用于一系列不同的环境,包括:在Twitter和书籍上使用语言,物种丰富,婴儿名称的受欢迎程度,市场资本化,体育运动,死亡率,死亡率和工作标题。我们提供了一系列补充翻文,这些额定本可以证明基于等级的同型同符学的可调性和讲故事的力量。

Complex systems often comprise many kinds of components which vary over many orders of magnitude in size: Populations of cities in countries, individual and corporate wealth in economies, species abundance in ecologies, word frequency in natural language, and node degree in complex networks. Here, we introduce `allotaxonometry' along with `rank-turbulence divergence' (RTD), a tunable instrument for comparing any two ranked lists of components. We analytically develop our rank-based divergence in a series of steps, and then establish a rank-based allotaxonograph which pairs a map-like histogram for rank-rank pairs with an ordered list of components according to divergence contribution. We explore the performance of rank-turbulence divergence, which we view as an instrument of `type calculus', for a series of distinct settings including: Language use on Twitter and in books, species abundance, baby name popularity, market capitalization, performance in sports, mortality causes, and job titles. We provide a series of supplementary flipbooks which demonstrate the tunability and storytelling power of rank-based allotaxonometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源