论文标题

使用深神经树架构窃取黑盒功能

Stealing Black-Box Functionality Using The Deep Neural Tree Architecture

论文作者

Teitelman, Daniel, Naeh, Itay, Mannor, Shie

论文摘要

本文通过引入名为“深神经树(DNTS)”的机器学习(ML)体系结构来克服黑盒模型的功能迈出了重大步骤。这种新的体系结构可以学会分开黑框模型的不同任务,并克隆其特定于任务的行为。我们建议使用主动学习算法训练DNT,以获得更快,更有效的训练。与先前的工作相反,我们仅根据输入输出交互研究一个复杂的“受害者”黑盒模型,与此同时,攻击者和受害者模型可能具有完全不同的内部体系结构。攻击者是一种基于ML的算法,而受害者是一个通常未知的模块,例如多功能数字芯片,复杂的模拟电路,机械系统,软件逻辑或这些混合物。受过训练的DNT模块不仅可以充当攻击的模块,而且还可以为克隆模型提供一定程度的解释性,这是由于所提出的架构的类似树状的性质。

This paper makes a substantial step towards cloning the functionality of black-box models by introducing a Machine learning (ML) architecture named Deep Neural Trees (DNTs). This new architecture can learn to separate different tasks of the black-box model, and clone its task-specific behavior. We propose to train the DNT using an active learning algorithm to obtain faster and more sample-efficient training. In contrast to prior work, we study a complex "victim" black-box model based solely on input-output interactions, while at the same time the attacker and the victim model may have completely different internal architectures. The attacker is a ML based algorithm whereas the victim is a generally unknown module, such as a multi-purpose digital chip, complex analog circuit, mechanical system, software logic or a hybrid of these. The trained DNT module not only can function as the attacked module, but also provides some level of explainability to the cloned model due to the tree-like nature of the proposed architecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源