论文标题

将Bi-Lipschitz离群值嵌入到线上

Computing Bi-Lipschitz Outlier Embeddings into the Line

论文作者

Chubarian, Karine, Sidiropoulos, Anastasios

论文摘要

将图形度量嵌入BI-Lipschitz嵌入到线路中的问题的问题引起了很多关注。最著名的近似算法计算了用失真$ o(c^2)$的嵌入,其中$ c $表示最佳失真[bădoiu\ etal〜2005]。我们提出了一种双标准近似算法,该算法将上述结果扩展到\ emph {outliers}的设置。 具体而言,我们说的是,公制空间$(x,ρ)$承认$(k,c)$ - 如果存在$ k \ subset x $,则嵌入$ | k | = k $,因此$(x \ setMinus k,ρ)$承认最多损坏了损坏的嵌入方式。给定的$ k \ geq 0 $,以及一个承认$(k,c)$的公制空间 - 嵌入,对于某些$ c \ geq 1 $,我们的算法计算一个$({\ Mathsf p} {\ Mathsf P} {\ Mathsf O} P} {\ Mathsf O} {\ Mathsf L} {\ Mathsf y}(c))$ - 在多项式时间内嵌入。这是离群Bi-Lipschitz嵌入的第一个算法结果。在我们的工作之前,可比较的离群值嵌入,仅因添加剂失真而知。

The problem of computing a bi-Lipschitz embedding of a graphical metric into the line with minimum distortion has received a lot of attention. The best-known approximation algorithm computes an embedding with distortion $O(c^2)$, where $c$ denotes the optimal distortion [Bădoiu \etal~2005]. We present a bi-criteria approximation algorithm that extends the above results to the setting of \emph{outliers}. Specifically, we say that a metric space $(X,ρ)$ admits a $(k,c)$-embedding if there exists $K\subset X$, with $|K|=k$, such that $(X\setminus K, ρ)$ admits an embedding into the line with distortion at most $c$. Given $k\geq 0$, and a metric space that admits a $(k,c)$-embedding, for some $c\geq 1$, our algorithm computes a $({\mathsf p}{\mathsf o}{\mathsf l}{\mathsf y}(k, c, \log n), {\mathsf p}{\mathsf o}{\mathsf l}{\mathsf y}(c))$-embedding in polynomial time. This is the first algorithmic result for outlier bi-Lipschitz embeddings. Prior to our work, comparable outlier embeddings where known only for the case of additive distortion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源