论文标题
带有双热力学解释的无XTAMIGY统计合奏
The nonextensive statistical ensembles with dual thermodynamic interpretations
论文作者
论文摘要
对于具有远距离相互作用和远距离相关性的复杂系统,对无Xtentive的统计集合进行了重新审视。近似值,假定非xtigense参数(1-q)的值很小,对于大多数正常系统的较大粒子数的限制都采用。在这种情况下,Tsallis熵可以随着能量和颗粒数波动的函数而扩展,因此可以得出广义吉布斯分布和大规范分布的幂律形式。这些新的分布函数可以应用于非xtentgendentive热力学中的自由能和巨大的热力学潜力。为了建立适当的非Xt骨热力学形式主义,双重热力学解释对于热力学关系和热力学数量是必需的。通过使用新的参数转换技术,可以从幂律吉布斯分布中推导单粒子分布。该技术在统计集合与准独立系统之间产生了一个联系,具有两种非Xtentive参数,具有完全不同的物理解释。此外,该技术用于构建非X量量子统计数据,并有效地避免了幂律大规范分布的分解难度。
The nonextensive statistical ensembles are revisited for the complex systems with long-range interactions and long-range correlations. An approximation, the value of nonextensive parameter (1-q) is assumed to be very tiny, is adopted for the limit of large particle number for most normal systems. In this case, Tsallis entropy can be expanded as a function of energy and particle number fluctuation, and thus the power-law forms of the generalized Gibbs distribution and grand canonical distribution can be derived. These new distribution functions can be applied to derive the free energy and grand thermodynamic potential in nonextensive thermodynamics. In order to establish appropriate nonextensive thermodynamic formalism, the dual thermodynamic interpretations are necessary for thermodynamic relations and thermodynamic quantities. By using a new technique of parameter transformation, the single-particle distribution can be deduced from the power-law Gibbs distribution. This technique produces a link between the statistical ensemble and the quasi-independent system with two kinds of nonextensive parameter having quite different physical explanations. Furthermore, the technique is used to construct nonextensive quantum statistics and effectively to avoid the factorization difficulty in the power-law grand canonical distribution.