论文标题

AMP链图:最小分离器和结构学习算法

AMP Chain Graphs: Minimal Separators and Structure Learning Algorithms

论文作者

Javidian, Mohammad Ali, Valtorta, Marco, Jamshidi, Pooyan

论文摘要

我们解决了在Andersson-Madigan-Perlman链图(AMP CG)中找到最小分离器的问题,即,找到一个节点的集合z,可以将给定的非贴剂对分隔一对,使得没有适当的子集的Z分开该对。我们分析了此问题的几个版本,并为每个版本提供多项式时间算法。其中包括从一组受限的节点中找到最小的分离器,为两个给定的分离集找到一个最小的分离器,以及测试给定的分离器是否最小。为了解决数据从数据中学习AMP CG的结构的问题,我们表明类似PC的算法(Pena,2012)是订单依赖性的,因为输出可以取决于给出变量的顺序。我们建议对PC状算法进行几种修改,以删除部分或所有这些订单依赖性。我们还扩展了(Xie等,2006)提出的基于分解的学习贝叶斯网络(BNS)的方法,以学习AMP CGS,其中包括BN在忠实性假设下将BN作为特殊情况。我们使用最小分离器结果证明了我们扩展的正确性。在我们的实验中,使用标准基准和合成生成的模型和数据证明了我们基于分解的方法(称为LCD-AMP)的竞争性能,与(修改版本的)PC样算法相比。 LCD-AMP算法通常优于PC样算法,并且我们对PC样算法的修改学习结构,这些结构与基础地面真相图更相似,而不是原始的PC样算法,尤其是在高维设置中。特别是,我们从经验上表明,当样本量相当大并且基础图稀疏时,两种算法的结果都更准确和稳定。

We address the problem of finding a minimal separator in an Andersson-Madigan-Perlman chain graph (AMP CG), namely, finding a set Z of nodes that separates a given nonadjacent pair of nodes such that no proper subset of Z separates that pair. We analyze several versions of this problem and offer polynomial-time algorithms for each. These include finding a minimal separator from a restricted set of nodes, finding a minimal separator for two given disjoint sets, and testing whether a given separator is minimal. To address the problem of learning the structure of AMP CGs from data, we show that the PC-like algorithm (Pena, 2012) is order-dependent, in the sense that the output can depend on the order in which the variables are given. We propose several modifications of the PC-like algorithm that remove part or all of this order-dependence. We also extend the decomposition-based approach for learning Bayesian networks (BNs) proposed by (Xie et al., 2006) to learn AMP CGs, which include BNs as a special case, under the faithfulness assumption. We prove the correctness of our extension using the minimal separator results. Using standard benchmarks and synthetically generated models and data in our experiments demonstrate the competitive performance of our decomposition-based method, called LCD-AMP, in comparison with the (modified versions of) PC-like algorithm. The LCD-AMP algorithm usually outperforms the PC-like algorithm, and our modifications of the PC-like algorithm learn structures that are more similar to the underlying ground truth graphs than the original PC-like algorithm, especially in high-dimensional settings. In particular, we empirically show that the results of both algorithms are more accurate and stabler when the sample size is reasonably large and the underlying graph is sparse.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源