论文标题

一项研究抑郁症识别的静息状态脑电图生物标志物

A study of resting-state EEG biomarkers for depression recognition

论文作者

Sun, Shuting, Li, Jianxiu, Chen, Huayu, Gong, Tao, Li, Xiaowei, Hu, Bin

论文摘要

背景:抑郁症已成为全球重大的健康负担,有效的检测抑郁症是一个巨大的公共卫生挑战。这项基于脑电图(EEG)的研究是探索抑郁识别的有效生物标志物。方法:使用128通道液压液压测量传感器网(HCGSN),从24名主要抑郁患者(MDD)和29个正常对照中收集了静息状态脑电图数据。为了更好地识别抑郁症,我们提取了不同类型的脑电图特征,包括线性特征,非线性特征和功能连通性特征相位滞后指数(PLI),以全面分析MDD患者的EEG信号。并使用不同的特征选择方法和分类器来评估最佳特征集。结果:功能连接功能PLI优于线性特征和非线性特征。当组合所有类型的特征以对MDD患者进行分类时,我们可以使用Relieff特征选择方法和逻辑回归(LR)分类器获得最高分类精度为82.31%。分析最佳特征集的分布时,发现PLI的光内连接边缘远远超过半球间的连接边缘,并且半球内连接边缘在两组之间具有显着差异。结论:功能连通性特征PLI在抑郁识别中起重要作用。特别是,PLI的骨内连接边缘可能是鉴定抑郁症的有效生物标志物。统计结果表明,MDD患者在左半球可能存在功能障碍。

Background: Depression has become a major health burden worldwide, and effective detection depression is a great public-health challenge. This Electroencephalography (EEG)-based research is to explore the effective biomarkers for depression recognition. Methods: Resting state EEG data was collected from 24 major depressive patients (MDD) and 29 normal controls using 128 channel HydroCel Geodesic Sensor Net (HCGSN). To better identify depression, we extracted different types of EEG features including linear features, nonlinear features and functional connectivity features phase lagging index (PLI) to comprehensively analyze the EEG signals in patients with MDD. And using different feature selection methods and classifiers to evaluate the optimal feature sets. Results: Functional connectivity feature PLI is superior to the linear features and nonlinear features. And when combining all the types of features to classify MDD patients, we can obtain the highest classification accuracy 82.31% using ReliefF feature selection method and logistic regression (LR) classifier. Analyzing the distribution of optimal feature set, it was found that intrahemispheric connection edges of PLI were much more than the interhemispheric connection edges, and the intrahemispheric connection edges had a significant differences between two groups. Conclusion: Functional connectivity feature PLI plays an important role in depression recognition. Especially, intrahemispheric connection edges of PLI might be an effective biomarker to identify depression. And statistic results suggested that MDD patients might exist functional dysfunction in left hemisphere.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源