论文标题

Chebyshev函数$θ(x)$的更清晰的边界

Sharper Bounds for the Chebyshev function $θ(x)$

论文作者

Broadbent, Samuel, Kadiri, Habiba, Lumley, Allysa, Ng, Nathan, Wilk, Kirsten

论文摘要

在本文中,我们为$ x $的所有范围内的质量计数函数$θ(x)$提供明确的界限。 $θ(x) - x $的错误项的界限是形状$εx$和$ \ frac {c_k x} {(\ log x)^k} $,$ k = 1,\ ldots,5 $。提供了$ε$和$ C_K $的值表。

In this article, we provide explicit bounds for the prime counting function $θ(x)$ in all ranges of $x$. The bounds for the error term for $θ(x)- x$ are of the shape $εx$ and $\frac{c_k x}{(\log x)^k}$, for $k=1,\ldots,5$. Tables of values for $ε$ and $c_k$ are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源