论文标题
对一般稀疏基质矩阵乘法的系统调查
A Systematic Survey of General Sparse Matrix-Matrix Multiplication
论文作者
论文摘要
一般的稀疏基质矩阵乘法(SPGEMM)吸引了研究人员在图形分析,科学计算和深度学习方面引起了很多关注。在过去的几十年中,已经针对不同的应用程序和计算体系结构开发了许多优化技术。本文的目的是提供有关SPGEMM研究的结构化和全面的概述。现有研究已根据目标架构和设计选择分为不同的类别。涵盖的主题包括典型应用程序,压缩格式,一般公式,关键问题和技术,面向建筑的优化和编程模型。分析和总结了不同算法的理由。这项调查充分揭示了SPGEMM研究对2021年的最新进展。此外,还提供了现有实施的彻底绩效比较。根据我们的发现,我们重点介绍了未来的研究方向,这些方向鼓励以后的研究更好地设计和实施。
General Sparse Matrix-Matrix Multiplication (SpGEMM) has attracted much attention from researchers in graph analyzing, scientific computing, and deep learning. Many optimization techniques have been developed for different applications and computing architectures over the past decades. The objective of this paper is to provide a structured and comprehensive overview of the researches on SpGEMM. Existing researches have been grouped into different categories based on target architectures and design choices. Covered topics include typical applications, compression formats, general formulations, key problems and techniques, architecture-oriented optimizations, and programming models. The rationales of different algorithms are analyzed and summarized. This survey sufficiently reveals the latest progress of SpGEMM research to 2021. Moreover, a thorough performance comparison of existing implementations is presented. Based on our findings, we highlight future research directions, which encourage better design and implementations in later studies.