论文标题
Padgan:一种用于性能增强各种设计的生成对抗网络
PaDGAN: A Generative Adversarial Network for Performance Augmented Diverse Designs
论文作者
论文摘要
深层生成模型被证明是自动设计合成和设计空间探索的有用工具。当在工程设计中应用时,现有的生成模型面临三个挑战:1)生成的设计缺乏多样性,并且不涵盖设计空间的所有领域,2)很难明确地改善生成的设计的整体性能或质量,而3)现有模型通常不会产生新颖的设计,在培训数据的领域之外。在本文中,我们通过提出基于新的确定点过程损失函数来解决这些挑战,以实现多样性和质量的概率建模。通过这种新的损失功能,我们开发了一种生成对抗网络的变体,该网络名为“性能增强了多样化的生成对抗网络”或Padgan,该网络可以生成新颖的高质量设计,并覆盖设计空间。使用三个综合示例和一个现实世界的翼型设计示例,我们证明了Padgan可以生成多样化和高质量的设计。与香草生成的对抗网络相比,它平均而言,它产生的样品平均质量得分高28%,多样性较大,而没有模式崩溃问题。与通常通过在训练数据边界内插值生成新设计的典型生成模型不同,我们表明帕德根将训练数据外的设计空间边界扩展到高质量区域。所提出的方法广泛适用于许多任务,包括设计空间探索,设计优化和创意解决方案建议。
Deep generative models are proven to be a useful tool for automatic design synthesis and design space exploration. When applied in engineering design, existing generative models face three challenges: 1) generated designs lack diversity and do not cover all areas of the design space, 2) it is difficult to explicitly improve the overall performance or quality of generated designs, and 3) existing models generally do not generate novel designs, outside the domain of the training data. In this paper, we simultaneously address these challenges by proposing a new Determinantal Point Processes based loss function for probabilistic modeling of diversity and quality. With this new loss function, we develop a variant of the Generative Adversarial Network, named "Performance Augmented Diverse Generative Adversarial Network" or PaDGAN, which can generate novel high-quality designs with good coverage of the design space. Using three synthetic examples and one real-world airfoil design example, we demonstrate that PaDGAN can generate diverse and high-quality designs. In comparison to a vanilla Generative Adversarial Network, on average, it generates samples with a 28% higher mean quality score with larger diversity and without the mode collapse issue. Unlike typical generative models that usually generate new designs by interpolating within the boundary of training data, we show that PaDGAN expands the design space boundary outside the training data towards high-quality regions. The proposed method is broadly applicable to many tasks including design space exploration, design optimization, and creative solution recommendation.