论文标题

一类准诚态的非马克维亚保利频道及其措施

A class of quasi-eternal non-Markovian Pauli channels and their measure

论文作者

Utagi, Shrikant, Rao, Vinod N., Srikanth, R., Banerjee, Subhashish

论文摘要

我们研究了一类Qubit非马克维亚将军Pauli动力学地图,发电机中具有多个奇异性。我们讨论了一些简单的例子,涉及地图的三角或其他非单调时间依赖性,并详细讨论没有任何三角功能依赖性的通道结构。我们在这里揭示了奇异性的概念,表明它对应于一个可以定期的点,但地图暂时不可固化,这给出了构造这种不可固化的非马克维亚通道的基本指南。被考虑的家族中的大多数渠道成员都是准元素非马克维亚(QENM),它比永恒的非马克维亚通道更广泛。具体而言,在所考虑的类中,准属性非马克维亚(QENM)通道的度量显示为$ \ frac {2} {3} {3} $在各向同性情况下,在各向异性情况下约为0.96。

We study a class of qubit non-Markovian general Pauli dynamical maps with multiple singularities in the generator. We discuss a few easy examples involving trigonometric or other non-monotonic time dependence of the map, and discuss in detail the structure of channels which don't have any trigonometric functional dependence. We demystify the concept of a singularity here, showing that it corresponds to a point where the dynamics can be regular but the map is momentarily non-invertible, and this gives a basic guideline to construct such non-invertible non-Markovian channels. Most members of the channels in the considered family are quasi-eternally non-Markovian (QENM), which is a broader class of non-Markovian channels than the eternal non-Markovian channels. In specific, the measure of quasi-eternal non-Markovian (QENM) channels in the considered class is shown to be $\frac{2}{3}$ in the isotropic case, and about 0.96 in the anisotropic case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源