论文标题

有限光子晶体的3D带隙中光态的局部密度

The local density of optical states in the 3D band gap of a finite photonic crystal

论文作者

Mavidis, Charalampos P., Tasolamprou, Anna C., Hasan, Shakeeb B., Koschny, Thomas, Economou, Eleftherios N., Kafesaki, Maria, Soukoulis, Costas M., Vos, Willem L.

论文摘要

三维(3D)光子带隙晶体是完全抑制整个晶体间隙中每个位置的光学状态(LDOS)局部密度的理想工具。但是,这个概念与理想的无限晶体有关,而任何真正的晶体装置都必须有限。这就提出了一个问题,即间隙中的LDO如何取决于有限大小的晶体内的位置和方向。因此,我们使用有限差分时间域(FDTD)模拟进行严格的数值计算,如先前在实验中所研究的,填充空气或甲苯的3D逆木架晶体。我们发现LDO与位置与位置呈指数下降到大部分晶体中。从对偶极子方向的依赖性,我们推断出特征性的LDOS衰减长度$ \ell_ρ$主要与远场偶极辐射效应有关,而预制器主要与近场偶极效应有关。 LDOS衰减长度的大小与用于方向运输的Bragg长度非常相似,这表明晶体中的LDOS由真空中支配,表明隧道从最接近的界面到感兴趣的位置。我们的工作导致在发射控制和照明,量子信息处理和光伏中的3D光子频带差距的应用中设计规则。

A three-dimensional (3D) photonic band gap crystal is an ideal tool to completely inhibit the local density of optical states (LDOS) at every position in the crystal throughout the band gap. This notion, however, pertains to ideal infinite crystals, whereas any real crystal device is necessarily finite. This raises the question as to how the LDOS in the gap depends on the position and orientation inside a finite-size crystal. Therefore, we employ rigorous numerical calculations using finite-difference time-domain (FDTD) simulations of 3D silicon inverse woodpile crystals filled with air or with toluene, as previously studied in experiments. We find that the LDOS versus position decreases exponentially into the bulk of the crystal. From the dependence on dipole orientation, we infer that the characteristic LDOS decay length $\ell_ρ$ is mostly related to far-field dipolar radiation effects, whereas the prefactor is mostly related to near-field dipolar effects. The LDOS decay length has a remarkably similar magnitude as the Bragg length for directional transport, which suggests that the LDOS in the crystal is dominated by vacuum states that tunnel from the closest interface towards the position of interest. Our work leads to design rules for applications of 3D photonic band gaps in emission control and lighting, quantum information processing, and in photovoltaics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源