论文标题

机器学习符合CMB温度的红移演变

Machine Learning meets the redshift evolution of the CMB Temperature

论文作者

Arjona, Rubén

论文摘要

我们提出了一种独立的和非参数重建,并通过机器学习算法是宇宙微波背景(CMB)温度的红移演化的机器学习算法,该温度是从宽的红移范围$ z \ in \ weft [0,3 \右] $中的$ z \ in \ weft [0,3 \ right] $的,而无需假设任何深色能量模型,即绝对的宇宙或光子数量或光子数量保存。特别是我们使用遗传算法,以避免对初始先验或宇宙学基金模型的依赖性。通过我们的重建,我们在晚期限制了新物理。我们从参数$ \ text {t}(z)= \ text {t} _0(1+z)^{1-β} $,双重关系$η(z)$和cesmicic opacity参数$τ(z)$提供了有关$β$参数的新颖估计值。此外,我们将约束放在变化的良好结构常数$α$上,该结构将在各种物理现象(例如CMB各向异性)中具有签名。总体而言,我们没有发现$1σ$区域内与已建立的$λ\ text {cdm} $模型的偏差的证据,从而证实了其预测潜力。

We present a model independent and non-parametric reconstruction with a Machine Learning algorithm of the redshift evolution of the Cosmic Microwave Background (CMB) temperature from a wide redshift range $z\in \left[0,3\right]$ without assuming any dark energy model, an adiabatic universe or photon number conservation. In particular we use the genetic algorithms which avoid the dependency on an initial prior or a cosmological fiducial model. Through our reconstruction we constrain new physics at late times. We provide novel and updated estimates on the $β$ parameter from the parametrisation $\text{T}(z)=\text{T}_0(1+z)^{1-β}$, the duality relation $η(z)$ and the cosmic opacity parameter $τ(z)$. Furthermore we place constraints on a temporal varying fine structure constant $α$, which would have signatures in a broad spectrum of physical phenomena such as the CMB anisotropies. Overall we find no evidence of deviations within the $1σ$ region from the well established $Λ\text{CDM}$ model, thus confirming its predictive potential.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源