论文标题

具有混合温度边界条件的对流动力学:为什么热放松重要以及如何加速它

Convective dynamics with mixed temperature boundary conditions: why thermal relaxation matters and how to accelerate it

论文作者

Anders, Evan H., Vasil, Geoffrey M., Brown, Benjamin P., Korre, Lydia

论文摘要

对流的天体物理模拟经常在域的顶部和底部施加不同的热边界条件,以更准确地对天然系统进行建模。在这项工作中,我们研究了Boussinesq近似下的雷利 - 贝纳德对流(RBC)。我们检查了具有混合温度边界条件的模拟,其中通量固定在底部边界,并且温度固定在顶部(“ ft”)。我们旨在了解与传统的热边界选择相比,FT边界如何改变对流解决方案的性质,在这种边界的传统选择中,温度固定在域的顶部和底部(“ TT”)。我们证明,FT模拟的热弛豫时间尺度取决于初始条件。 “经典”初始条件采用静液压和热平衡线性温度曲线表现出较长的热弛豫。在使用TT模拟的非线性状态作为初始条件的FT模拟中看不到这种长松弛(“ TT-to-to-ft”)。在热放松的统计固定状态下,ft模拟的平均行为对应于具有TT边界的等效模拟,并且诸如Nusselt数字和PECLET数字之类的时间和体积平均流量统计在FT和TT模拟之间是无法区分的。 FT边界从根本上是不对称的,我们检查了这些边界在流中产生的不对称。我们发现,固定 - 频率边界比固定温度边界产生的极端温度事件更多。然而,这些近似边界的不对称并不能可测量地打破对流内部的对称性。我们简要探索旋转的RBC,以证明我们对热弛豫的发现延伸到了更复杂的情况下,并显示了TT-to-ft-ft初始条件的功能。

Astrophysical simulations of convection frequently impose different thermal boundary conditions at the top and the bottom of the domain in an effort to more accurately model natural systems. In this work, we study Rayleigh-Benard convection (RBC) under the Boussinesq approximation. We examine simulations with mixed temperature boundary conditions in which the flux is fixed at the bottom boundary and the temperature is fixed at the top ("FT"). We aim to understand how FT boundaries change the nature of the convective solution compared to the traditional choice of thermal boundaries, in which the temperature is fixed at the top and bottom of the domain ("TT"). We demonstrate that the timescale of thermal relaxation for FT simulations is dependent upon the initial conditions. "Classic" initial conditions which employ a hydrostatically -- and thermally -- balanced linear temperature profile exhibit a long thermal relaxation. This long relaxation is not seen in FT simulations which use a TT simulation's nonlinear state as initial conditions ("TT-to-FT"). In the thermally relaxed, statistically stationary state, the mean behavior of an FT simulation corresponds to an equivalent simulation with TT boundaries, and time- and volume-averaged flow statistics like the Nusselt number and the Peclet number are indistinguishable between FT and TT simulations. FT boundaries are fundamentally asymmetric, and we examine the asymmetries that these boundaries produce in the flow. We find that the fixed-flux boundary produces more extreme temperature events than the fixed-temperature boundary. However, these near-boundary asymmetries do not measurably break the symmetry in the convective interior. We briefly explore rotating RBC to demonstrate that our findings with respect to thermal relaxation carry over to this more complex case, and to show the power of TT-to-FT initial conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源