论文标题

带有一阶术语的准抛物线方程和移动域中的$ l^1 $ -DATA

Quasilinear parabolic equations with first order terms and $L^1$-data in moving domains

论文作者

Lan, Do, Son, Dang Thanh, Tang, Bao Quoc, Thuy, Le Thi

论文摘要

研究了一类弱解决方案的弱解决方案,这些解决方案根据一阶项和移动域中的一阶术语和可集成数据而具有非线性。该课程包括$ p $ laplace方程作为特殊情况。通过在移动域中获得适当的梯度估计以及适当的Aubin-Lions引理,显示出弱解是全局的。

The global existence of weak solutions to a class of quasilinear parabolic equations with nonlinearities depending on first order terms and integrable data in a moving domain is investigated. The class includes the $p$-Laplace equation as a special case. Weak solutions are shown to be global by obtaining appropriate estimates on the gradient as well as a suitable version of Aubin-Lions lemma in moving domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源