论文标题
HIT-SI实验的高级建模
Advanced modeling for the HIT-SI Experiment
论文作者
论文摘要
在PSI-TET代码中实现了一个分别演化电子和离子温度的两个温度磁水动力学(MHD)模型,用于在HIT-SI实验中对等离子体动力学进行建模。与单个温度霍尔-MHD相比,两个温度的Hall-MHD模型表明了与实验测量的定性一致性改善,包括:远红外干涉法,离子多普勒光谱,汤姆森散射和磁探针测量值。在14.5-68.5 kHz范围内的许多不同的喷油器频率下,在PSI-TET和Nimrod代码中,将两倍的模型用于PSI-TET和NIMROD代码中的HIT-SI模拟。在所有频率下,两个温度的模型都会导致环形电流增加,较低的和弦平均密度以及相对于单温模拟的当前质心对称性。随着喷射器频率的增加,这两个代码都会产生较高的平均温度和环形电流。计算两个温度PSI-TET模型的功率平衡和壁的热通量,并指示相当大的粘性和压缩加热,尤其是在高喷射器频率下。还提出了参数扫描,以达到人工扩散率以及dirichlet的壁温度和密度。人工扩散率和密度边界条件都显着改变了血浆密度曲线,导致平均温度更高,环形电流较高,并且在低扩散率和低壁密度下相对密度的波动增加。 14.5 kHz处的高功率,低密度模拟实现了足够高的增益(G = 5),以产生大量持续1-2个喷油器周期的闭合通量。
A two-temperature magnetohydrodynamic (MHD) model, which evolves the electron and ion temperatures separately, is implemented in the PSI-Tet code and used to model plasma dynamics in the HIT-SI experiment. When compared with single-temperature Hall-MHD, the two-temperature Hall-MHD model demonstrates improved qualitative agreement with experimental measurements, including: far-infrared interferometry, ion Doppler spectroscopy, Thomson scattering, and magnetic probe measurements. The two-temperature model is utilized for HIT-SI simulations in both the PSI-Tet and NIMROD codes at a number of different injector frequencies in the 14.5-68.5 kHz range. At all frequencies the two-temperature models result in increased toroidal current, lower chord-averaged density, and symmetrization of the current centroid, relative to single-temperature simulations. Both codes produce higher average temperatures and toroidal currents as the injector frequency is increased. Power balance and heat fluxes to the wall are calculated for the two-temperature PSI-Tet model and indicate considerable viscous and compressive heating, particularly at high injector frequency. Parameter scans are also presented for the artificial diffusivity, and Dirichlet wall temperature and density. Artificial diffusivity and the density boundary condition both significantly modify the plasma density profiles, leading to larger average temperatures, higher toroidal current, and increased relative density fluctuations at low diffusivity and low wall density. High power, low density simulations at 14.5 kHz achieve sufficiently high gain (G = 5) to generate significant volumes of closed flux lasting 1-2 injector periods.